10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=$\frac{sinθ}{1-si{n}^{2}θ}$,在同一平面直角坐標(biāo)系中,將曲線C上的點(diǎn)按坐標(biāo)變換$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{4}y}\end{array}\right.$得到曲線C′.
(1)求曲線C′的普通方程;
(2)設(shè)點(diǎn)M的直角坐標(biāo)為(-2,0),直線l與曲線C′的交點(diǎn)為A,B,求|MA|•|MB|的值.

分析 (1)求出C的直角坐標(biāo)方程,將曲線C上的點(diǎn)按坐標(biāo)變換$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{4}y}\end{array}\right.$得到曲線C′的方程;
(2)把直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$代入y=$\frac{9}{4}$x2中,整理得9t2-20$\sqrt{2}$t+72=0,設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,由t得幾何意義可知|MA||MB|=|t1t2|.

解答 解:(1)曲線C的極坐標(biāo)方程是ρ=$\frac{sinθ}{1-si{n}^{2}θ}$,直角坐標(biāo)方程為y=x2
將曲線C上的點(diǎn)按坐標(biāo)變換$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{4}y}\end{array}\right.$得到曲線C′的方程為y=$\frac{9}{4}$x2
(2)把直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$代入y=$\frac{9}{4}$x2中,
整理得9t2-20$\sqrt{2}$t+72=0,
設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2
∴t1t2=9,
由t得幾何意義可知,|MA|•|MB|=|t1t2|=9.

點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、直線方參數(shù)方程的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)F2與拋物線y2=4x的焦點(diǎn)重合,過F2作與x軸垂直的直線l與橢圓交于S、T兩點(diǎn),與拋物線交于C、D兩點(diǎn),且$\frac{|CD|}{|ST|}=2\sqrt{2}$
(Ⅰ)求橢圓E的方程;
(Ⅱ)若過點(diǎn)M(2,0)的直線與橢圓E相交于兩點(diǎn)A,B,設(shè)P為橢圓E上一點(diǎn),且滿足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<$\frac{{2\sqrt{5}}}{3}$時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a>0,b>0,試比較M=$\sqrt{a}$+$\sqrt$與N=$\sqrt{a+b}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.我們知道,如果集合A⊆U,那么U的子集A的補(bǔ)集為∁UA={x|x∈U,且x∉A},類似地對于集合A、B,我們把集合{x|x∈A且x∉B}叫做A與B的差集,記作A-B.例如A={1,2,3,5,8},B={4,5,6,7,8}.則A-B={1,2,3}.B-A={4,6,7}.
據(jù)此,回答以下問題:
(1)補(bǔ)集與差集有什么異同點(diǎn)?
(2)若U是高一(1)班全體同學(xué)組成的集合,A是高一(1)班全體女同學(xué)組成的集合,求U-A及∁UA.
(3)在下列各圖中,用陰影表示集合A-B.

(4)如果A-B=∅,那么A與B之間具有怎樣的關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知m、n為兩條不同的直線,α、β為兩個不同的平面,則下列命題中正確的是(  )
A.α⊥β,m?α⇒m⊥βB.α⊥β,m?α,n?β⇒m⊥n
C.m∥n,n⊥α⇒m⊥αD.m?α,n?α,m∥β,n∥β⇒α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且過點(diǎn)(-2,3).
(1)求橢圓C的方程;
(2)過橢圓C的右焦點(diǎn)作兩條相互垂直的直線l,m,且直線l交橢圓C于M、N兩點(diǎn),直線m交橢圓C于P、Q兩點(diǎn),求|MN|+|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線C:y2=4x的焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)P在拋物線C上,且PF⊥OF,則|$\overrightarrow{OF}$-$\overrightarrow{PF}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題p:若$\overrightarrow{a}$•$\overrightarrow$>0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;
命題q:若函數(shù)f(x)在(-∞,0]及(0,+∞)上都是減函數(shù),則f(x)在(-∞,+∞)上是減函數(shù).下列說法:①“p∨q”是真命題;②“p∨q”是假命題;③非p為假命題;④非q為假命題.
其中正確的是②(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線事$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線與直線y=2x+5平行,則雙曲線的離心率等于( 。
A.2B.5C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案