精英家教網 > 高中數學 > 題目詳情
5.在log23,2-3,cosπ這三個數中最大的數是log23.

分析 利用指數函數對數函數、三角函數的單調性值域即可得出.

解答 解:log23>1,2-3∈(0,1),cosπ=-1這三個數中最大的數是log23.
故答案為:log23.

點評 本題考查了指數函數對數函數、三角函數的單調性值域,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.已知函數$f(x)=sin(\frac{π}{3}-ωx)(ω>0)$向左平移半個周期得g(x)的圖象,若g(x)在[0,π]上的值域為$[-\frac{{\sqrt{3}}}{2},1]$,則ω的取值范圍是(  )
A.$[\frac{1}{6},1]$B.$[\frac{2}{3},\frac{3}{2}]$C.$[\frac{1}{3},\frac{7}{6}]$D.$[\frac{5}{6},\frac{5}{3}]$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知Sn為等差數列{an}的前n項和.若S9=18,則a3+a5+a7=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選擇意向進行調查(調查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調查結果整理成條形圖如下.圖中,已知課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學類課程.為進一步研究學生選課意向,結合圖表,采取分層抽樣方法從全校抽取1%的學生作為研究樣本組(以下簡稱“組M”).

(Ⅰ)在“組M”中,選擇人文類課程和自然科學類課程的人數各有多少?
(Ⅱ)為參加某地舉辦的自然科學營活動,從“組M”所有選擇自然科學類課程的同學中隨機抽取4名同學前往,其中選擇課程F或課程H的同學參加本次活動,費用為每人1500元,選擇課程G的同學參加,費用為每人2000元.
(。┰O隨機變量X表示選出的4名同學中選擇課程G的人數,求隨機變量X的分布列;
(ⅱ)設隨機變量Y表示選出的4名同學參加科學營的費用總和,求隨機變量Y的期望.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(3,-2),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.-3B.$-\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知{an}是各項為正數的等差數列,Sn為其前n項和,且4Sn=(an+1)2
(Ⅰ)求a1,a2的值及{an}的通項公式;
(Ⅱ)求數列$\{{S_n}-\frac{7}{2}{a_n}\}$的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.在空間直角坐標系O-xyz中,四面體A-BCD在xOy,yOz,zOx坐標平面上的一組正投影圖形如圖所示(坐標軸用細虛線表示).該四面體的體積是$\frac{8}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知i是虛數單位,若(1-i)(a+i)=3-bi(a,b∈R),則a+b等于( 。
A.3B.1C.0D.-2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=5,AB=6,M是CC1中點,CC1=8.
(1)求證:平面AB1M⊥平面A1ABB1;
(2)求平面AB1M與平面ABC所成二面角的正弦值.

查看答案和解析>>

同步練習冊答案