已知-1<a<0,那么-a,-a3,a2的大小關系是(  )
分析:利用“作差法”和不等式的性質(zhì)即可得出.
解答:解:∵-1<a<0,∴1+a>0,0<-a<1.
∴-a-a2=-a(1+a)>0,a2-(-a3)=a2(1+a)>0.
∴-a>a2>-a3
故選B.
點評:本題考查了利用“作差法”比較兩個數(shù)的大小和不等式的性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知曲線C:y=x2與直線l:x-y+2=0交于兩點A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點A和點B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設點P(s,t)是L上的任一點,且點P與點A和點B均不重合.
(1)若點Q是線段AB的中點,試求線段PQ的中點M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+
5125
=0與D有公共點,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(1-x)=f(-x-3),當0≤x≤2時,f(x)=
x
2
,那使f(x)=
1
2
成立的x的集合為( 。
A、{x|x=2n,n∈Z}
B、{x|x=2n-1,n∈Z}
C、{x|x=4n-1,n∈Z}
D、{x|x=4n+1,n∈Z}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳二模)如圖,已知動圓M過定點F(0,1)且與x軸相切,點F關于圓心M的對稱點為F′,動點F′的軌跡為C.
(1)求曲線C的方程;
(2)設A(x0,y0)是曲線C上的一個定點,過點A任意作兩條傾斜角互補的直線,分別與曲線C相交于另外兩點P、Q.
①證明:直線PQ的斜率為定值;
②記曲線C位于P、Q兩點之間的那一段為l.若點B在l上,且點B到直線PQ的距離最大,求點B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年山東省德州一中高一模塊檢測考試數(shù)學 題型:解答題

(本小題滿分13分)
為了預防甲型流感,某學校對教室用藥熏消毒法進行消毒. 已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,yt的函數(shù)關系式為a為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:
(1)求從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關系式;
(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室,那從藥物釋放開始,至少需要經(jīng)過多少小時后,學生才能回到教室.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省深圳市高三下學期第二次調(diào)研考試理科數(shù)學試卷(解析版) 題型:解答題

如圖6,已知動圓M過定點F(1,0)且與x軸相切,點F 關于圓心M 的對稱點為 F',動點F’的軌跡為C.

(1)求曲線C的方程;

(2)設是曲線C上的一個定點,過點A任意作兩條傾斜角互補的直線,分別與曲線C相交于另外兩點P 、Q.

①證明:直線PQ的斜率為定值;

②記曲線C位于P 、Q兩點之間的那一段為l.若點B在l上,且點B到直線PQ的

距離最大,求點B的坐標.

 

查看答案和解析>>

同步練習冊答案