分析 (1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系進(jìn)行討論即可.
(2)對(duì)任意的x∈[0,+∞),f(x)<0轉(zhuǎn)化為證明對(duì)任意的x∈[0,+∞),sinx-ax2+$\frac{3a}{4}$-$\frac{3}{2}$<0,即可,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)進(jìn)行研究即可.
解答 解:(1)當(dāng)a=0時(shí),f(x)=ex(sinx-$\frac{3}{2}$),
則f′(x)=ex(sinx-$\frac{3}{2}$)+excosx=ex(sinx-$\frac{3}{2}$+cosx),
∵sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)≤$\sqrt{2}$<$\frac{3}{2}$,
∴sinx+cosx-$\frac{3}{2}$<0,
故f′(x)<0,
則f(x)在R上單調(diào)遞減,
∴f(x)max=f(0)=-$\frac{3}{2}$,f(x)min=f(π)=-$\frac{{3e}^{π}}{2}$,
∴f(x)∈[-$\frac{{3e}^{π}}{2}$,-$\frac{3}{2}$];
(2)證明:當(dāng)x≥0時(shí),y=ex≥1,
要證明對(duì)任意的x∈[0,+∞),f(x)<0.
則只需要證明對(duì)任意的x∈[0,+∞),sinx-ax2+$\frac{3a}{4}$-$\frac{3}{2}$<0.
設(shè)g(a)=sinx-ax2+$\frac{3a}{4}$-$\frac{3}{2}$=(-x2+$\frac{3}{4}$)a+sinx-$\frac{3}{2}$,
看作以a為變量的一次函數(shù),
要使sinx-ax2+$\frac{3a}{4}$-$\frac{3}{2}$<0,
則 $\left\{\begin{array}{l}{g(\frac{1}{2})<0}\\{g(1)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{sinx-{\frac{1}{2}x}^{2}-\frac{9}{8}<0,①}\\{sinx{-x}^{2}-\frac{3}{4}<0,②}\end{array}\right.$,
∵sinx<$\frac{1}{2}$x2+$\frac{9}{8}$恒成立,∴①恒成立,
對(duì)于②,令h(x)=sinx-x2-$\frac{3}{4}$,
則h′(x)=cosx-2x,
設(shè)x=t時(shí),h′(x)=0,即cost-2t=0.
∴t=$\frac{cost}{2}$<$\frac{1}{2}$,sint<sin$\frac{π}{6}$=$\frac{1}{2}$,
∴h(x)在(0,t)上,h′(x)>0,h(x)單調(diào)遞增,
在(t,+∞)上,h′(x)<0,h(x)單調(diào)遞減,
則當(dāng)x=t時(shí),函數(shù)h(x)取得最大值,
h(t)=sint-t2-$\frac{3}{4}$=sint-($\frac{cost}{2}$)2-$\frac{3}{4}$
=sint-$\frac{1{-sin}^{2}t}{4}$-$\frac{3}{4}$=$\frac{1}{4}$sin2t+sint-1
=($\frac{sint}{2}$+1)2-2≤($\frac{5}{4}$)2-2<0,
故②式成立,
綜上對(duì)任意的x∈[0,+∞),f(x)<0.
點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性與導(dǎo)數(shù)的應(yīng)用,求函數(shù)的導(dǎo)數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,12] | B. | [0,6] | C. | [0,12] | D. | [1,13] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | π-2 | B. | $\frac{π}{2}$ | C. | $\frac{π}{4}$-$\frac{1}{2}$ | D. | $\frac{π}{2}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com