定義在(-1,1)上的函數(shù)f(x)滿足:對任意x,y∈(-1,1),都有f(x)+f(y)=f().

(1)求證:函數(shù)f(x)是奇函數(shù);

(2)若當(dāng)x∈(-1,0)時,有f(x)>0,求證:f(x)在(-1,1)上是減函數(shù).

答案:
解析:

  證明:(1)函數(shù)f(x)的定義域是(-1,1),

  由f(x)+f(y)=f(),令x=y(tǒng)=0,得f(0)+f(0)=f(),∴f(0)=0.

  令y=-x,得f(x)+f(-x)=f()=f(0)=0.

  ∴f(-x)=-f(x).

  ∴f(x)為奇函數(shù).

  (2)先證f(x)在(0,1)上單調(diào)遞減.令0<x1<x2<1,則

  f(x1)-f(x2)=f(x1)+f(-x2)=f()=f().

  ∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0.

  ∴>0.

  又(x2-x1)-(1-x1x2)=(x2-1)(x1+1)<0,

  ∴0<x2-x1<1-x1x2

  ∴-1<<0.由題意知f()>0,

  ∴f(x1)>f(x2).

  ∴f(x)在(0,1)上為減函數(shù).

  又f(x)為奇函數(shù),

  ∴f(x)在(-1,1)上也是減函數(shù).


提示:

  思路分析:(1)定義法證明,利用賦值法獲得f(0)的值進(jìn)而取x=-y是解題關(guān)鍵;(2)定義法證明,其中判定的范圍是關(guān)鍵.

  綠色通道:對于抽象函數(shù)的單調(diào)性和奇偶性問題,必用單調(diào)性和奇偶性的定義來解決,即定義法是解決抽象函數(shù)單調(diào)性和奇偶性問題的通法;判斷抽象函數(shù)的奇偶性與單調(diào)性時,在依托定義的基礎(chǔ)上,用好賦值法,注意賦值的科學(xué)性、合理性.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時,函數(shù)解析式是f(x)=
1
4x
-
a
2x
(a∈R)

(1)求f(x)在[-1,1]上的解析表達(dá)式;
(2)求f(x)在[-1,0]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)為定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時,函數(shù)解析式是f(x)=
1
4x
-
a
2x
(a∈R)

(1)求f(x)在[-1,1]上的解析表達(dá)式;
(2)求f(x)在[-1,0]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:專項題 題型:解答題

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m,n∈[-1,1],m+n≠0時,,
(Ⅰ)用定義證明:f(x)在[-1,1]上是增函數(shù);
(Ⅱ)解不等式:
(Ⅲ)若f(x)≤t2-2at+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年安徽省宣城市涇縣中學(xué)高一(上)12月段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案