過(guò)拋物線的焦點(diǎn)作直線與拋物線交于A、B兩點(diǎn),以AB為直徑的圓與拋物線的準(zhǔn)線的位置關(guān)系是( 。
A.相離B.相切C.相交D.不確定
不妨設(shè)拋物線為標(biāo)準(zhǔn)拋物線:y2=2px (p>0 ),即拋物線位于Y軸的右側(cè),以X軸為對(duì)稱(chēng)軸.
設(shè)過(guò)焦點(diǎn)的弦為PQ,PQ的中點(diǎn)是M,M到準(zhǔn)線的距離是d.
而P到準(zhǔn)線的距離d1=|PF|,Q到準(zhǔn)線的距離d2=|QF|.
又M到準(zhǔn)線的距離d是梯形的中位線,故有d=
|PF|+|QF|
2
,
由拋物線的定義可得:
|PF|+|QF|
2
=
|PQ|
2
=半徑.
所以圓心M到準(zhǔn)線的距離等于半徑,
所以圓與準(zhǔn)線是相切.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)).點(diǎn)在橢圓上,且,直線軸、軸分別交于兩點(diǎn).
(i)設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值;
(ii)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)拋物線y2=8x的焦點(diǎn)為F,過(guò)F,的直線交拋物線于A(x1,y1),B(x2,y2),則y1y2=( 。
A.8B.16C.-8D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)A(2,0),拋物線C:x2=4y的焦點(diǎn)為F,射線FA與拋物線C相交于點(diǎn)M,與其準(zhǔn)線相交于點(diǎn)N,則|FM|:|MN|=( 。
A.2:
5
B.1:2C.1:
5
D.1:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線y2=4x上的一點(diǎn)M到焦點(diǎn)的距離是5,且點(diǎn)M在第一象限,則M的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知F是拋物線y=x2的焦點(diǎn),M、N是該拋物線上的兩點(diǎn),|MF|+|NF|=3,則線段MN的中點(diǎn)到x軸的距離為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線y2=2px(p>0)焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則|AB|的最小值為( 。
A.
p
2
B.pC.2pD.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知△ABC的三個(gè)頂點(diǎn)都在拋物線y2=2px(p>0)上,拋物線的焦點(diǎn)F在AB上,AB的傾斜角為60°,|BF|=|CF|=4,則直線AC的斜率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某隧道橫截面由拋物線及矩形的三邊組成,尺寸如圖,某卡車(chē)空車(chē)時(shí)可以通過(guò)該隧道,現(xiàn)載一集裝箱,箱寬3米,車(chē)與箱共高4.5米,問(wèn)此車(chē)能否通過(guò)此隧道?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案