6.一臺機(jī)器按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器的運(yùn)轉(zhuǎn)的速度而變化,具有線性相關(guān)關(guān)系,下表為抽樣試驗(yàn)的結(jié)果:
 轉(zhuǎn)速x(轉(zhuǎn)/秒) 8 10 12 14 16
 每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件) 5 7 8 911
(1)如果y對x有線性相關(guān)關(guān)系,求回歸方程;
(2)若實(shí)際生產(chǎn)中,允許每小時(shí)生產(chǎn)的產(chǎn)品中有缺點(diǎn)的零件最多有10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在設(shè)么范圍內(nèi)?參考公式:$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

分析 (1)先做出橫標(biāo)和縱標(biāo)的平均數(shù),做出利用最小二乘法求線性回歸方程的系數(shù)的量,做出系數(shù),求出a,寫出線性回歸方程.
(2)根據(jù)上一問做出的線性回歸方程,使得函數(shù)值小于或等于10,解出不等式.

解答 解:(1)$\overline{x}$=12,$\overline{y}$=8,
40+70+96+126+176-5×12×8=28,
64+100+144+196+256-5×144=40,
∴b=0.7,a=8-0.7×12=-0.4
∴回歸直線方程為:y=0.7x-0.4;
(3)由上一問可知0.7x-0.4≤10,
解得x≤14.85.

點(diǎn)評 本題考查線性回歸分析,考查線性回歸方程,考查線性回歸方程的應(yīng)用,考查不等式的解法,是一個(gè)綜合題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)的定義域?yàn)閇-2,2],對任意的x,y∈[-2,2],都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),有f(x)>0,f(1)=1,若不等式f(x)<logam(a>1)對任意的實(shí)數(shù)x∈[-2,2]恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.[a2,+∞)B.(0,a2]C.(a2,+∞)D.(0,a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四邊形EFGH是圓心角為60°,半徑為R的扇形的內(nèi)接矩形,點(diǎn)F,G在$\widehat{AB}$上,求四邊形EFGH的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.容器內(nèi)有濃度為20%的糖水300克,現(xiàn)向其中加入一定濃度的新糖水200克,若使混合糖水的濃度在15%以下(含15%),則新加糖水的濃度必須不超過7.5%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在正四棱錐S-ABCD中,SA=2AB=2,M,N分別是棱SA,SC的中點(diǎn),平面SBC∩平面SAD=l.
(1)求證:l∥平面ABCD;
(2)求異面直線DM與BN夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義符號函數(shù):sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則函數(shù)f(x)=x•sgn(lnx)與函數(shù)g(x)=x4-x2的圖象的交點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=log2$\frac{2}{1-x}$.
(1)求f(x)的定義域及其零點(diǎn);
(2)判斷函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.${∫}_{1}^{e}$$\frac{1+lnx}{x}$dx=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,AB=2BC,則cosA的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案