【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時(shí)的收益為萬元,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時(shí)的收益為0.5萬元,

1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?

【答案】1;(2)投資債券等穩(wěn)健型產(chǎn)品為萬元,投資股票等風(fēng)險(xiǎn)型產(chǎn)品為萬元,投資收益最大為3萬元.

【解析】

(1)投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,用待定系數(shù)法求這兩種產(chǎn)品的收益和投資的函數(shù)關(guān)系;

(2)由(1)的結(jié)論,設(shè)投資股票等風(fēng)險(xiǎn)型產(chǎn)品為萬元,則投資債券等穩(wěn)健型產(chǎn)品為萬元,這時(shí)可構(gòu)造出一個(gè)關(guān)于收益的函數(shù),然后利用求函數(shù)最大值的方法進(jìn)行求解.

1)依題意設(shè),

;

2)設(shè)投資股票等風(fēng)險(xiǎn)型產(chǎn)品為萬元,

則投資債券等穩(wěn)健型產(chǎn)品為萬元,

,

當(dāng)萬元時(shí),收益最大萬元,

20萬元資金,投資債券等穩(wěn)健型產(chǎn)品為萬元,

投資股票等風(fēng)險(xiǎn)型產(chǎn)品為萬元,投資收益最大為3萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)的最大值及取得最大值時(shí)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin2x-2sin2x-a.

①若f(x)=0在x∈R上有解,則a的取值范圍是______;

②若x1,x2是函數(shù)y=f(x)在[0,]內(nèi)的兩個(gè)零點(diǎn),則sin(x1+x2)=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的最小正周期;

(2)當(dāng)時(shí),

(ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;

(ⅱ)求函數(shù)的最大值最小值,并分別求出使該函數(shù)取得最大值最小值時(shí)的自變量的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓 上, 是橢圓的一個(gè)焦點(diǎn).

)求橢圓的方程;

)橢圓C上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)O對(duì)稱,直線, 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被直線截得的弦長(zhǎng)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)當(dāng)時(shí),求的定義域;

2)若上為減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x-3)2+(y-4)2=4.

(Ⅰ)過原點(diǎn)O(0,0)作圓C的切線,切點(diǎn)分別為H、K,求直線HK的方程;

(Ⅱ)設(shè)定點(diǎn)M(-3,8),動(dòng)點(diǎn)N在圓C上運(yùn)動(dòng),以CM,CN為領(lǐng)邊作平行四邊形MCNP,求點(diǎn)P的軌跡方程;

(Ⅲ)平面上有兩點(diǎn)A(1,0),B(-1,0),點(diǎn)P是圓C上的動(dòng)點(diǎn),求|AP|2+|BP|2的最小值;

(Ⅳ)若Q是x軸上的動(dòng)點(diǎn),QR,QS分別切圓C于R,S兩點(diǎn).試問:直線RS是否恒過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求該函數(shù)的值域;

(2)求不等式的解集;

(3)若對(duì)于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

1)證明:上單調(diào)遞增.

2)設(shè),函數(shù),如果總存在,對(duì)任意都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案