【題目】已知數(shù)列滿足.

(1)若,求數(shù)列的通項(xiàng)公式;

(2)若,且數(shù)列是公比等于2的等比數(shù)列,求的值,使數(shù)列也是等比數(shù)列;

(3)若,且,數(shù)列有最大值與最小值,求的取值范圍.

【答案】1;(2;(3.

【解析】

1)根據(jù)得出等差數(shù)列關(guān)系,求通項(xiàng)公式;

2)求出,利用累加法求出,根據(jù)數(shù)列是等比數(shù)列即可求解;

3)求出,討論其最大值最小值的關(guān)系求解.

(1),

所以數(shù)列為等差數(shù)列.因?yàn)?/span>,所以.

(2)數(shù)列是公比等于2的等比數(shù)列,,

所以,所以,

所以

.

因?yàn)閿?shù)列是等比數(shù)列,

所以,所以,

當(dāng)時(shí),,數(shù)列是等比數(shù)列

所以.

(3)當(dāng)時(shí),,

所以

,

當(dāng)時(shí),上式依然成立,所以.

,

因?yàn)?/span>,所以,

即數(shù)列的偶數(shù)項(xiàng)構(gòu)成的數(shù)列是單調(diào)增數(shù)列,

同理,

即數(shù)列的奇數(shù)項(xiàng)構(gòu)成的數(shù)列是單調(diào)減數(shù)列,

,所以數(shù)列的最大值,

,所以數(shù)列的最小值.

所以,

因?yàn)?/span>,所以,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxa,fx)是fx)的導(dǎo)函數(shù),若關(guān)于x的方程fx0有兩個(gè)不等的根,則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,是邊長(zhǎng)為的正方形硬紙片(如圖1所示),切去陰影部分所示的四個(gè)全等的等腰三角形,再沿虛線折起,使得,,四個(gè)點(diǎn)重合于圖2中的點(diǎn),正好形成一個(gè)正四棱錐形狀的包裝盒(如圖2所示),設(shè)正四棱錐的底面邊長(zhǎng)為.

1)若要求包裝盒側(cè)面積不小于,求的取值范圍;

2)若要求包裝盒容積最大,試問(wèn)應(yīng)取何值?并求出此時(shí)包裝盒的容積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),下列說(shuō)法正確的是( )

1的極小值點(diǎn);

2)函數(shù)有且只有1個(gè)零點(diǎn);

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求解方程;

)根據(jù)的不同取值,討論函數(shù)的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于雙曲線(),若點(diǎn)滿足,則稱的外部;若點(diǎn)滿足,則稱的內(nèi)部.

(1)證明:直線上的點(diǎn)都在的外部.

(2)若點(diǎn)的坐標(biāo)為,點(diǎn)的內(nèi)部或上,求的最小值.

(3)過(guò)點(diǎn),圓()內(nèi)部及上的點(diǎn)構(gòu)成的圓弧長(zhǎng)等于該圓周長(zhǎng)的一半,求、滿足的關(guān)系式及的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.設(shè)數(shù)列的前n項(xiàng)和為且滿足

1)求數(shù)列的通項(xiàng)公式;

2)若求正整數(shù)的值;

3)是否存在正整數(shù),使得恰好為數(shù)列的一項(xiàng)?若存在,求出所有滿足條件的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的方程為,過(guò)拋物線上一點(diǎn)作斜率為的兩條直線分別交拋物線兩點(diǎn)(三點(diǎn)互不相同),且滿足

1)求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

2)當(dāng)時(shí),若點(diǎn)的坐標(biāo)為,求為鈍角時(shí)點(diǎn)的縱坐標(biāo)的取值范圍;

3)設(shè)直線上一點(diǎn),滿足,證明線段的中點(diǎn)在軸上;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為,一個(gè)方向向量為的直線只有一個(gè)公共點(diǎn)

1)若且點(diǎn)在第二象限,求點(diǎn)的坐標(biāo);

2)若經(jīng)過(guò)的直線垂直,求證:點(diǎn)到直線的距離;

3)若點(diǎn)在橢圓上,記直線的斜率為,且為直線的一個(gè)法向量,且的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案