已知函數(shù),f '(x)為f(x)的導(dǎo)函數(shù),若f '(x)是偶函數(shù)且f '(1)=0.
⑴求函數(shù)的解析式;
⑵若對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有,求實(shí)數(shù)的最小值;
⑶若過點(diǎn),可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

;⑵的最小值為;⑶.

解析試題分析:⑴,由是偶函數(shù)得.又,所以,由此可得解析式;
⑵對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有,則只需即可.所以接下來就利用導(dǎo)數(shù)求在區(qū)間上的最大值與最小值,然后代入解不等式即可得的最小值.⑶易知點(diǎn)不在曲線上.凡是過某點(diǎn)的切線(不是在某點(diǎn)處的切線)的問題,都要設(shè)出切點(diǎn)坐標(biāo)然后列方程組..
設(shè)切點(diǎn)為.則.又,∴切線的斜率為
由此得,即.下面就考查這個(gè)方程的解的個(gè)數(shù).
因?yàn)檫^點(diǎn),可作曲線的三條切線,所以方程有三個(gè)不同的實(shí)數(shù)解.即函數(shù)有三個(gè)不同的零點(diǎn).接下來就利用導(dǎo)數(shù)結(jié)合圖象研究這個(gè)函數(shù)的零點(diǎn)的個(gè)數(shù).
試題解析:⑴∵,1分
是偶函數(shù)得.又,所以3分
.4分
⑵令,即,解得.5分

    1. <sub id="srite"></sub>
    2. <tt id="srite"></tt>










         



        練習(xí)冊(cè)系列答案
        相關(guān)習(xí)題

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn) 處的切線斜率為.
        (1)求實(shí)數(shù)的值;
        (2) 求函數(shù)在區(qū)間上的最小值;
        (Ⅲ)若函數(shù)的圖像上存在兩點(diǎn),使得對(duì)于任意給定的正實(shí)數(shù)都滿足是以為直角頂點(diǎn)的直角三角形,且三角形斜邊中點(diǎn)在軸上,求點(diǎn)的橫坐標(biāo)的取值范圍.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知,函數(shù).
        (1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
        (2)當(dāng)有兩個(gè)極值點(diǎn)(設(shè)為)時(shí),求證:.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù).
        (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
        (2)當(dāng)時(shí),若,恒成立,求實(shí)數(shù)的最小值;
        (3)證明.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
        (Ⅰ)當(dāng)時(shí),求的極值;
        (Ⅱ)當(dāng)a>0時(shí),討論的單調(diào)性;
        (Ⅲ)若對(duì)任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實(shí)數(shù)m的取值范圍。

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        (14分)己知函數(shù)f (x)=ex,xR
        (1)求 f (x)的反函數(shù)圖象上點(diǎn)(1,0)處的切線方程。
        (2)證明:曲線y=f(x)與曲線y=有唯一公共點(diǎn);
        (3)設(shè),比較的大小,并說明理由。

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        (本小題滿分12分)已知函數(shù),.
        (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
        (2)若恒成立,求實(shí)數(shù)的值.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        設(shè)函數(shù)。
        (Ⅰ)若時(shí),函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;
        (Ⅱ)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍。

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
        (I)求函數(shù)的解析式;
        (II)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值.

        查看答案和解析>>

        同步練習(xí)冊(cè)答案
          <ruby id="srite"><del id="srite"><sup id="srite"></sup></del></ruby>