6.給一個(gè)四棱錐的每個(gè)頂點(diǎn)染上一種顏色,并使得同一條棱的兩端異色如果有4種顏色可供使用,則共有x種不同的染色方法;如果有5種顏色可供使用,則共有y種不同的染色方法,那么y-x的值為348.

分析 如果有5種顏色可供使用,首先給頂點(diǎn)P選色,有5種結(jié)果,再給A選色有4種結(jié)果,再給B選色有3種結(jié)果,最后分兩種情況即B與D同色、B與D不同色來(lái)討論,根據(jù)分步計(jì)數(shù)原理和分類計(jì)數(shù)原理得到結(jié)果.同理可求如果有4種顏色可供使用,即可求出y-x種.

解答 解:設(shè)四棱錐為P-ABCD.如果有5種顏色可供使用,
下面分兩種情況即B與D同色與B與D不同色來(lái)討論,
(1)P:C51,A:C41,B:C31
B與D同色:D:1,C:C31
(2)P:C51,A:C41,B:C31,
B與D不同色:D:C21,C:C21
共有C51•C41•C31•1•C31+C51•C41•C31•C21•C21=420.
則y=420種,
如果有4種顏色可供使用,
下面分兩種情況即C與A同色與C與A不同色來(lái)討論,
(1)P的著色方法種數(shù)為C41,A的著色方法種數(shù)為C31,B的著色方法種數(shù)為C21,
C與A同色時(shí)C的著色方法種數(shù)為1,D的著色方法種數(shù)為C21
(2)P的著色方法種數(shù)為C41,A的著色方法種數(shù)為C31,B的著色方法種數(shù)為C21,
C與A不同色時(shí)C的著色方法種數(shù)為C11,D的著色方法種數(shù)為C11
共有C41•C31.2•C21+C41•C31•2=48+24=72種結(jié)果.
則x=72種,
故y-x=420-72=348,
故答案為:348

點(diǎn)評(píng) 本題同一道理科高考題目類似,那是一道給花園土地選不同的花色的題目,同學(xué)們可以比較,總結(jié)此類問題的做法,對(duì)于復(fù)雜一點(diǎn)的計(jì)數(shù)問題,有時(shí)分類以后,每類方法并不都是一步完成的,必須在分類后又分步,綜合利用兩個(gè)原理解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,滿足“f(xy)=f(x)+f(y)”的單調(diào)遞增函數(shù)是( 。
A.f(x)=log${\;}_{\frac{1}{2}}$xB.f(x)=x3C.f(x)=2xD.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx-ax2-bx(a,b∈R),g(x)=$\frac{2x-2}{x+1}$-lnx.
(1)當(dāng)a=-1時(shí),f(x)與g(x)在定義域上的單調(diào)性相反,求b的取值范圍;
(2)當(dāng)a,b都為0時(shí),斜率為k的直線與曲線y=f(x)交A(x1,y1),B(x2,y2)(x1<x2)于兩點(diǎn),求證:x1<$\frac{1}{k}<{x_2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,若AB=4,AC=6,D為邊BC的中點(diǎn),O為△ABC的外心,則$\overrightarrow{AO}•\overrightarrow{AD}$=( 。
A.13B.24C.26D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知銳角△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且$\overrightarrow m$=(a,b+c),$\overrightarrow n=({1,cosC+\sqrt{3}sinC}),\overrightarrow m∥\overrightarrow n$.
(1)求角A;
(2)若a=3,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=$\sqrt{x+1}+\frac{1}{x-2}$的定義域?yàn)閇-1,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=-4x3+kx,對(duì)任意的x∈[-1,1],總有f(x)≤1,則實(shí)數(shù)k的取值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在某次問卷調(diào)查中,有a,b兩題為選做題,規(guī)定每位被調(diào)查者必須且只需在其中選做一題,其中包括甲乙在內(nèi)的4名調(diào)查者選做a題的概率均為$\frac{2}{3}$,選做b題的概率均為$\frac{1}{3}$.
(1)求甲、乙兩位被調(diào)查者選做同一道題的概率;
(2)設(shè)這4名受訪者中選做b題的人數(shù)為ξ,求ξ的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且an=2-2Sn,數(shù)列{bn}為等差數(shù)列,且b5=14,b7=20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=an•bn,n∈N*,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案