3.在△ABC中,角A、B、C所對的邊分別是a,b,c,若A=60°,b=1,其面積為$\sqrt{3}$.則$\frac{a+b+c}{sinA+sinB+sinC}$的值為( 。
A.$3\sqrt{3}$B.$\frac{2}{3}\sqrt{39}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{\sqrt{39}}}{2}$

分析 由已知利用三角形面積公式可求c的值,進而利用余弦定理可求a,利用正弦定理及比例的性質(zhì)即可計算得解.

解答 解:∵A=60°,b=1,其面積為$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×c×\frac{\sqrt{3}}{2}$,可得:c=4,
∴a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{1+16-2×1×4×\frac{1}{2}}$=$\sqrt{13}$,
∴$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{a}{sinA}=\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{2}{3}\sqrt{39}$.
故選:B.

點評 本題主要考查了三角形面積公式,余弦定理,正弦定理及比例的性質(zhì)在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,a,b,c分別是角A,B,C所對的邊;
(1)、證明余弦定理:a2=b2+c2-2bccosA;
(2)、在ABC中2a2-bc=2(bccosA+cacosB+abcosC),求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}是公差不為0的等差數(shù)列,a1+1,a2+1,a4+1成等比數(shù)列,且a2+a3=-12,則an=-2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某超市去年的銷售額為a萬元,計劃在今后10年內(nèi)每年比上一年增長10%,從今年起10年內(nèi)這家超市的總銷售額為(  )萬元.
A.1.19aB.1.15aC.10a(1.110-1)D.11a(1.110-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a>0,集合A={x|ax2-2x+2a-1=0},B={y|y=log2(x+$\frac{a}{x}$-4)},p:A=∅,q:B=R.
(1)若p∧q為真,求a的最大值;
(2)若p∧q為為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列{an}的前n項和為Sn,若a1=1,an+1=3Sn(n≥1),則a2016=3×42014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若數(shù)列{an}的通項公式an=$\frac{2}{{n({n+1})}}$,則其前n項和Sn等于( 。
A.$\frac{n}{n+1}$B.$\frac{2n}{n+1}$C.$\frac{n+1}{n+2}$D.$\frac{2n}{n+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcosC+$\sqrt{3}$bsinC-a-c=0,則角B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式x(x-1)<2的解集是( 。
A.{x|-2<x<1}B.{x|-1<x<2}C.{x|x>1或x<-2}D.{x|x>2或x<-1}

查看答案和解析>>

同步練習(xí)冊答案