8.方程|x-1|+|y-1|=1確定的曲線所圍成的圖形面積為(  )
A.1B.2C.3D.4

分析 將方程|x-1|+|y-1|=1進行化簡,作出表示的曲線所圍成的圖形即可得到結論.

解答 解:當x≥1,y≥1時,方程等價為x+y-3=0,
當x≥1,y≤1時,方程等價為x-y-1=0,
當x≤1,y≥1時,方程等價為x-y+1=0,
當x≤1,y≤1時,方程等價為x+y-1=0,
則對應的圖象如圖:
則圍成的圖象為正方形,其中B(0,1),C(1,0),
則BC=$\sqrt{2}$,
則正方形的面積S=$\sqrt{2}×\sqrt{2}$=2,
故選:B.

點評 本題主要考查二元一次不等式組表示平面區(qū)域以及對應圖象的面積的計算,根據(jù)條件將方程進行化簡是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.與命題“若x∈A,則x∈B”等價的命題為若x∉A,則x∉B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足|AP|=|PM|,NP⊥MA,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線交曲線E于不同的兩點G,H(點G在F,H之間),且滿足$\overrightarrow{FG}=λ\overrightarrow{FH}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知p:x2-4x-5>0,q:x2-2x+1-λ2>0,若p是q的充分不必要條件,則正實數(shù)λ的取值范圍是( 。
A.(0,1]B.(0,2)C.$({0,\frac{3}{2}}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)求二面角A-BD-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設a>0,b>0.若$\sqrt{3}$是3a與32b的等比中項,則$\frac{2}{a}$+$\frac{1}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別是邊CD,CB的中點,AC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的五棱錐,且$PB=\sqrt{10}$.
(1)求證:BD⊥平面POA;
(2)求二面角B-AP-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.巴西世界杯足球賽正在如火如荼進行.某人為了了解我校學生“通過電視收看世界杯”是否與性別有關,從全校學生中隨機抽取30名學生進行了問卷調(diào)查,得到了如下列聯(lián)表:
男生女生合計
收看10
不收看8
合計30
已知在這30名同學中隨機抽取1人,抽到“通過電視收看世界杯”的學生的概率是$\frac{8}{15}$.
(I)請將上面的列聯(lián)表補充完整,并據(jù)此資料分析在犯錯誤概率不超過0.01的前提下“通過電視收看世界杯”與性別是否有關?
(II)若從這30名同學中的男同學中隨機抽取2人參加一活動,記“通過電視收看世界杯”的人數(shù)為X,求X的分布列和均值.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(c+a)(b+d)}$,n=a+b+c+d)
P(K2>k0  0.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知在三棱柱ABC-A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分別是B1C1,A1A的中點.
(1)求證:A1D∥平面B1CE;
(2)設M是的中點,N在棱AB上,且BN=1,P是棱AC上的動點,直線NP與平面MNC所成角為θ,試問:θ的正弦值存在最大值嗎?若存在,請求出$\frac{AP}{AC}$的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案