3.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)求二面角A-BD-P的余弦值.

分析 (1)取PD中點M,連接EM,AM,推導(dǎo)出四邊形ABEM為平行四邊形,CD⊥平面PAD,由此能證明BE⊥DC.
(2)連接BM,推導(dǎo)出PD⊥EM,PD⊥AM,從而直線BE在平面PBD內(nèi)的射影為直線BM,∠EBM為直線BE與平面PBD所成的角,由此能求出直線BE與平面PDB所成角的正弦值.
(3)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-P的余弦值.

解答 證明:(1)如圖,取PD中點M,連接EM,AM.∵E,M分別為PC,PD的中點,∴EM∥DC,且EM=$\frac{1}{2}$DC,
又由已知,可得EM∥AB,且EM=AB,
∴四邊形ABEM為平行四邊形,∴BE∥AM.
∵PA⊥底面ABCD,AD⊥AB,AB∥DC,
∴CD⊥平面PAD,∴CD⊥AM,
∴BE⊥DC.
解:(2)連接BM,由(1)有CD⊥平面PAD,得CD⊥PD,
而EM∥CD,∴PD⊥EM.
又∵AD=AP,M為PD的中點,∴PD⊥AM,
∴PD⊥BE,∴PD⊥平面BEM,
∴平面BEM⊥平面PBD.
∴直線BE在平面PBD內(nèi)的射影為直線BM,
∵BE⊥EM,∴∠EBM為銳角,
∴∠EBM為直線BE與平面PBD所成的角.
依題意,有PD=2$\sqrt{2}$,而M為PD中點,
∴AM=$\sqrt{2}$,∴BE=$\sqrt{2}$.
∴在直角三角形BEM中,sin∠EBM=$\frac{EM}{BM}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$,
∴直線BE與平面PBD所成角的正弦值為$\frac{\sqrt{3}}{3}$.
(3)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
B(1,0,0),D(0,2,0),P(0,0,2),
$\overrightarrow{BD}$=(-1,2,0),$\overrightarrow{BP}$=(-1,0,2),
設(shè)平面BDP的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=-x+2y=0}\\{\overrightarrow{n}•\overrightarrow{BP}=-x+2z=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,1,1),
平面ABD的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)二面角A-BD-P的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{6}}$=$\frac{\sqrt{6}}{6}$.
∴二面角A-BD-P的余弦值為$\frac{\sqrt{6}}{6}$.

點評 本題考查線面平行的證明,考查線面角的正弦值的求法,考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-a|-$\frac{1}{2}$x,(a>0).
(Ⅰ)若a=3,解關(guān)于x的不等式f(x)<0;
(Ⅱ)若對于任意的實數(shù)x,不等式f(x)-f(x+a)<a2+$\frac{a}{2}$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為了普及環(huán)保知識,增強環(huán)保意識,某大學(xué)隨即抽取30名學(xué)生參加環(huán)保知識測試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為m,眾數(shù)為n,平均值為$\overline{x}$,則( 。
A.m=n=$\overline{x}$B.m=n<$\overline{x}$C.m<n<$\overline{x}$D.n<m<$\overline{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知m,n是兩條不同直線α,β是兩個不同平面,則下列命題正確的是(  )
A.若α,β垂直于同一平面,則α與β平行
B.若m,n平行于同一平面,則m與n平行
C.若m,n不平行,則m與n不可能垂直于同一平面
D.若α,β不平行,則在α內(nèi)不存在與β平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點為F,左、右頂點為A1、A2,過F作A1A2的垂線與雙曲線交于B、C兩點,若A1B⊥A2C,則該雙曲線的漸近線斜率為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.方程|x-1|+|y-1|=1確定的曲線所圍成的圖形面積為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z=3-4i(i是虛數(shù)單位),則復(fù)數(shù)$\frac{\overline z}{1+i}$的虛部為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}i$C.$\frac{1}{2}$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\frac{3-a}{{{a^x}+1}}+asinx$,那么下列命題正確的是( 。
A.若a=0,則y=f(x)與y=3是同一函數(shù)
B.若0<a≤1,則$f(-\frac{π}{2})<f(2-{log_3}2)<f[{(\frac{1}{3})^{{{log}_3}\frac{2}{3}}}]<f({log_3}5)<f(\frac{π}{2})$
C.若a=2,則對任意使得f(m)=0的實數(shù)m,都有f(-m)=1
D.若a>3,則f(cos2)<f(cos3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知在平面直角坐標(biāo)系xOy中,拋物線x2=2y的焦點為F,M(3,5),點Q在拋物線上,則|MQ|+|QF|的最小值為$\frac{11}{2}$.

查看答案和解析>>

同步練習(xí)冊答案