如圖,是的內(nèi)接三角形,PA是圓O的切線,切點(diǎn)為A,PB交AC于點(diǎn)E,交圓O于點(diǎn)D,PA=PE,,PD=1,DB=8.

(1)求的面積;
(2)求弦AC的長(zhǎng).

(1);(2).

解析試題分析:本題主要考查圓的切線的性質(zhì)、切割線定理、勾股定理、三角形面積公式、相交弦定理等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、邏輯推理能力、計(jì)算能力.第一問,先利用切線的性質(zhì)得到,所以,,所以由切割線定理有,所以利用三角形面積求△的面積為;第二問,在中,利用勾股定理得,,再由相交弦定理得出
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/0/1yalq4.png" style="vertical-align:middle;" />是⊙的切線,切點(diǎn)為,
所以,                                                       1分
,所以,                                        2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d0/0/p3f6x.png" style="vertical-align:middle;" />,,所以由切割線定理有,所以,    4分
所以△的面積為.                                              5分
(2)在中,由勾股定理得                                       6分
, ,
所以由相交弦定理得                                          9分
所以,故.                                            10分
考點(diǎn):圓的切線的性質(zhì)、切割線定理、勾股定理、三角形面積公式、相交弦定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知圓內(nèi)接四邊形,切圓于點(diǎn),且與四邊形對(duì)角線延長(zhǎng)線交于點(diǎn),切圓O于點(diǎn),且與延長(zhǎng)線交于點(diǎn),延長(zhǎng)于點(diǎn),若.

(1)求證:;
(2)求證:四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,AB=AC,AD是中線,P為AD上一點(diǎn),CF∥AB,BP延長(zhǎng)線交AC、CF于E、F,求證:PB2=PE·PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,外一點(diǎn),是切線,為切點(diǎn),割線相交于,的中點(diǎn),的延長(zhǎng)線交于點(diǎn).證明:
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點(diǎn)E,AB=2AC
(1)求證:BE=2AD;
(2)當(dāng)AC=3,EC=6時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,PA切圓O于點(diǎn)A,割線PBC交圓O于點(diǎn)B、C,∠APC的角平分線分別與AB、AC相交于點(diǎn)D、E,求證:

(1)AD=AE;
(2)AD2=DB·EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是圓的直徑,延長(zhǎng)線上的一點(diǎn),是圓的割線,過點(diǎn)的垂線,交直線于點(diǎn),交直線于點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為.

(1)求證:四點(diǎn)共圓;(2)若,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(幾何證明選講選做題)如圖3,PAB、PCD為⊙O的兩條割線,若 PA=5,AB=7,CD=11,,則BD等于   .

查看答案和解析>>

同步練習(xí)冊(cè)答案