【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實(shí)數(shù)x0 , 使得對(duì)任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為( )
A.
B.
C.
D.
【答案】D
【解析】解:由題意可得,f(x0)是函數(shù)f(x)的最小值,f(x0+2016π)是函數(shù)f(x)的最大值. 顯然要使結(jié)論成立,只需保證區(qū)間[x0 , x0+2016π]能夠包含函數(shù)的至少一個(gè)完整的單調(diào)區(qū)間即可.
又f(x)=cosωx(sinωx+ cosωx)= sin2ωx+ =sin(2ωx+ )+ ,
故2016π≥ ,求得ω≥ ,
故則ω的最小值為 ,
故選:D.
由題意可得區(qū)間[x0 , x0+2016π]能夠包含函數(shù)的至少一個(gè)完整的單調(diào)區(qū)間,利用兩角和的正弦公式求得f(x)=sin(2ωx+ )+ ,再根據(jù)2016π≥ ,求得ω的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)為,其離心率為,又拋物線在點(diǎn)處的切線恰好過(guò)橢圓的一個(gè)焦點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)斜率為的直線交橢圓于兩點(diǎn),直線的斜率分別為,是否存在常數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= (x≠0,a>0)是奇函數(shù),且當(dāng)x>0時(shí),f(x)有最小值2 .
(1)求f(x)的表達(dá)式;
(2)設(shè)數(shù)列{an}滿足a1=2,2an+1=f(an)﹣an(n∈N*).令bn= ,求證bn+1=bn2;
(3)求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin(2x+φ)的圖象向左平移 個(gè)單位,所得到的函數(shù)圖象關(guān)于y軸對(duì)稱,則φ的一個(gè)可能取值為( )
A.
B.
C.0
D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量 , , .
(1)若 ∥ ,求證:△ABC為等腰三角形;
(2)若 ⊥ ,邊長(zhǎng)c=2,角C= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若0<α< ,﹣ <β<0,cos( +α)= ,cos( ﹣ )= ,則cos(α+ )=( )
A.
B.﹣
C.
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來(lái)越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每年每次租時(shí)間不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人獨(dú)立來(lái)該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過(guò)兩小時(shí)還車的概率分別為, ;兩小時(shí)以上且不超過(guò)三小時(shí)還車的概率為, ;兩人租車時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求甲、乙都在三到四小時(shí)內(nèi)還車的概率和甲、乙兩人所付租車費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線: (為參數(shù))和直線: (為參數(shù)).
(1)將曲線的方程化為普通方程;
(2)設(shè)直線與曲線交于兩點(diǎn),且為弦的中點(diǎn),求弦所在的直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com