【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每年每次租時(shí)間不超過兩小時(shí)免費(fèi),超過兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人獨(dú)立來該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為 ;兩小時(shí)以上且不超過三小時(shí)還車的概率為 ;兩人租車時(shí)間都不會(huì)超過四小時(shí).

(1)求甲、乙都在三到四小時(shí)內(nèi)還車的概率和甲、乙兩人所付租車費(fèi)相同的概率;

(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.

【答案】1;(2)分布列見解析,數(shù)學(xué)期望是

【解析】試題分析:(1)首先求出兩個(gè)人租車時(shí)間超過三小時(shí)的概率,甲乙兩人所付的租車費(fèi)用相同即租車時(shí)間相同:都不超過兩小時(shí)、都在兩小時(shí)以上且不超過三小時(shí)和都超過三小時(shí)三類求解即可.

2)隨機(jī)變量ξ的所有取值為0,24,68,由獨(dú)立事件的概率分別求概率,即可列出分布列.

試題解析:(1)由題意得,甲,乙在三小時(shí)以上且不超過四小時(shí)還車的概率分別為

記甲、乙兩人所付得租車費(fèi)用相同為事件,則

所以,甲、乙兩人所付得租車費(fèi)用相同的概率為

2)設(shè)甲、乙兩個(gè)所付的費(fèi)用之和為可能取得值為0,24,68

,

,

分布列

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anlog an , 求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實(shí)數(shù)x0 , 使得對(duì)任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關(guān)系是(
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),a3=5,S10=100.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2 +2n求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是(
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是各項(xiàng)均不相等的數(shù)列, 為它的前項(xiàng)和,滿足.

(1)若,且成等差數(shù)列,求的值;

(2)若的各項(xiàng)均不相等,問當(dāng)且僅當(dāng)為何值時(shí), 成等差數(shù)列?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn).

(1)求證:平面CFM⊥平面BDF;
(2)若點(diǎn)N為線段CE的中點(diǎn),EC=2,F(xiàn)D=3,求證:MN∥平面BEF.

查看答案和解析>>

同步練習(xí)冊(cè)答案