【題目】已知集合A={x|x2﹣x﹣2>0},函數(shù)g(x)=的定義域?yàn)榧?/span>B,
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},且CA,求實(shí)數(shù)P的取值范圍.
【答案】(1)見(jiàn)解析;
(2)[4,+∞).
【解析】
試題(1)先分別確定集合A,B,A={x|x>2,或x<﹣1},B={x|﹣3≤x≤3},再確定A∩B和A∪B;
(2)先求出集合C={x|x<﹣},再根據(jù)CA,列不等式求解即可.
解:(1)對(duì)于集合A:由x2﹣x﹣2>0解得,x|x>2,或x<﹣1,
所以,A={x|x>2,或x<﹣1},
對(duì)于集合B:函數(shù)g(x)=的自變量x需滿足:
3﹣|x|≥0,解得,x∈[﹣3,3],
即B={x|﹣3≤x≤3},
所以,A∩B={x|﹣3≤x<﹣1,或2<x≤3},A∪B=R;
(2)C={x|4x+p<0}={x|x<﹣},
因?yàn)?/span>CA,所以﹣≤﹣1,
解得,p≥4,
所以,實(shí)數(shù)p的取值范圍為:[4,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年1月10日,引發(fā)新冠肺炎疫情的病毒基因序列公布后,科學(xué)家們便開(kāi)始了病毒疫苗的研究過(guò)程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動(dòng)物試驗(yàn).已知一個(gè)科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測(cè)接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無(wú)關(guān).
(1)求一個(gè)接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;
(2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:
①若在一個(gè)接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;
②若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元.本著節(jié)約成本的原則,選擇哪種實(shí)驗(yàn)方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過(guò)個(gè)國(guó)家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國(guó)家或地區(qū)直接宣布“封國(guó)”或“封城”,隨著國(guó)外部分活動(dòng)進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開(kāi)始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:
企業(yè)成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企業(yè)成立年限 | 1 | 2 | 3 | 4 | 5 |
倒閉企業(yè)數(shù)量(萬(wàn)家) | 5.28 | 4.72 | 3.58 | 2.70 | 2.15 |
倒閉企業(yè)所占比例 | 21.4% | 19.1% | 14.5% | 10.9% | 8.7% |
(1)由所給數(shù)據(jù)可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)建立關(guān)于的回歸方程,預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例.
參考數(shù)據(jù):,,,,
相關(guān)系數(shù),樣本的最小二乘估計(jì)公式為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過(guò)1500元部分 | 3 | 1 | 不超過(guò)3000元部分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 2 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 3 | 超過(guò)12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫(xiě)出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;
(2)某稅務(wù)部門(mén)在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再?gòu)闹羞x2人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知分別是橢圓的左、右頂點(diǎn),過(guò)的直線交橢圓于兩點(diǎn),記直線的交點(diǎn)為,是否存在一條定直線,使點(diǎn)恒在直線上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】,.
(1)若在是增函數(shù),求實(shí)數(shù)a的范圍;
(2)若在上最小值為3,求實(shí)數(shù)a的值;
(3)若在時(shí)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有2013位來(lái)自不同國(guó)家的代表參加一個(gè)會(huì)議,每位代表都懂得若干種語(yǔ)言,已知其中任意四位代表之間都可進(jìn)行交談而不需要此四位代表以外的其他人幫助,即此四人中的任意兩人都能講同一種語(yǔ)言而實(shí)現(xiàn)直接溝通,或者通過(guò)第三個(gè)人的翻譯實(shí)現(xiàn)間接溝通,或者通過(guò)他們各自的翻譯能講的同一種語(yǔ)言實(shí)現(xiàn)低效的間接溝通,證明:可以將所有代表分配住進(jìn)671個(gè)房間,每個(gè)房間住3人,使得每個(gè)房間的3人都可以交談。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com