正方體A-C
1中,棱長為1,M在棱AB上,AM=1/3,P是面ABCD上的動點,P到線A
1D
1的距離與P到點M的距離平方差為1,則P點的軌跡以下哪條曲線上? ( )
解:如圖所示:正方體ABCD-A
1B
1C
1D
1中,作PQ⊥AD,Q為垂足,則PQ⊥面ADD
1A
1,過點Q作QR⊥D
1A
1,
則D
1A
1⊥面PQR,PR即為點P到直線A
1D
1的距離,由題意可得 PR
2-PQ
2=RQ
2=4.
又已知 PR
2-PM
2=4,
∴PM=PQ,即P到點M的距離等于P到AD的距離,根據(jù)拋物線的定義可得,點P的軌跡是拋物線,
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,在三棱錐P—ABC中,已知
點E,F(xiàn),G分別是所在棱的中點,則下面結(jié)論中正確的是:
。
①平面EFG//平面PBC
②平面EFG
平面ABC
③
是直線EF與直線PC所成的角
④
是平面PAB與平面ABC所成二面角的平面角
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知
中,
,
平面
,
分別為
上的動點.
(1)若
,求證:平面
平面
;
(2)若
,
,求平面
與平面
所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分1
3分)如圖6,正方形
所在平面與圓
所在平面相交于
,
線段
為圓
的弦,
垂直于圓
所在平面,
垂足
是圓
上異于
、
的點,
,圓
的直徑為9.
(1)求證:平面
平面
;
(2)求二面角
的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,一幾何體的三視圖如下:則這個幾何體是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,正方體ABCD-A1B1C1D1中,M、N分別為棱C1D1、C1C的中點,有以下四個結(jié)論:
①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;③直線BN與MB1是異面直線;④直線AM與DD1是異面直線.其中正確的結(jié)論的個數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是兩條不同的直線,
是兩個不同的平面,
下列命題正確的是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
⊿ABC1與⊿ABC2均為等腰直角三角形,且腰長均為1,二面角C1-
AB-C2為60o,
則點C
1與C2之間的距離可能是___________.(寫出二個可能值即可)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖(1)已知矩形
中,
,
、
分別是
、
的中點,點
在
上,且
,把
沿著
翻折,使點
在平面
上的射影恰為點
(如圖(2))。
(1)求證:平面
平面
;
(2)求二面角
的大小.
圖(1) 圖(2)
查看答案和解析>>