精英家教網 > 高中數學 > 題目詳情
正方體A-C1中,棱長為1,M在棱AB上,AM=1/3,P是面ABCD上的動點,P到線A1D1的距離與P到點M的距離平方差為1,則P點的軌跡以下哪條曲線上? (   ) 
A.圓B.橢圓C.雙曲線D.拋物線
D


解:如圖所示:正方體ABCD-A1B1C1D1中,作PQ⊥AD,Q為垂足,則PQ⊥面ADD1A1,過點Q作QR⊥D1A1,
則D1A1⊥面PQR,PR即為點P到直線A1D1的距離,由題意可得 PR2-PQ2=RQ2=4.
又已知 PR2-PM2=4,
∴PM=PQ,即P到點M的距離等于P到AD的距離,根據拋物線的定義可得,點P的軌跡是拋物線,
故選D.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

如圖,在三棱錐P—ABC中,已知點E,F,G分別是所在棱的中點,則下面結論中正確的是:     。
①平面EFG//平面PBC
②平面EFG平面ABC
是直線EF與直線PC所成的角
是平面PAB與平面ABC所成二面角的平面角

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知中,平面,
分別為上的動點.
(1)若,求證:平面平面;
(2)若,,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)如圖6,正方形所在平面與圓所在平面相交于,
線段為圓的弦,垂直于圓所在平面,
垂足是圓上異于、的點,
,圓的直徑為9.
(1)求證:平面平面;
(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,一幾何體的三視圖如下:則這個幾何體是(   )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題


如圖,正方體ABCD-A1B1C1D1中,M、N分別為棱C1D1、C1C的中點,有以下四個結論:

①直線AM與CC1是相交直線;  
②直線AM與BN是平行直線;③直線BN與MB1是異面直線;④直線AM與DD1是異面直線.其中正確的結論的個數是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是兩條不同的直線,是兩個不同的平面,      
下列命題正確的是 (   )
A.若B.若,則
C.若D.若,則

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

⊿ABC1與⊿ABC2均為等腰直角三角形,且腰長均為1,二面角C1-AB-C2為60o,則點C1與C2之間的距離可能是___________.(寫出二個可能值即可)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖(1)已知矩形中,,、分別是、的中點,點上,且,把沿著翻折,使點在平面上的射影恰為點(如圖(2))。
(1)求證:平面平面
(2)求二面角的大小.

圖(1)                    圖(2)

查看答案和解析>>

同步練習冊答案