6.f(x)=ax+sinx是R上的減函數(shù),則實(shí)數(shù)a的范圍是( 。
A.(-∞,-1]B.(-∞,-1)C.(-1,+∞)D.[-1,+∞)

分析 求出函數(shù)f(x)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≤-cosx,從而求出a的范圍即可.

解答 解:∵f(x)=ax+sinx是R上的減函數(shù),
∴f′(x)≤0恒成立,
即f′(x)=a+cosx≤0,
即a≤-cosx,
∵-1≤-cosx≤1,
∴a≤-1,
故選:A.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=$\frac{1}{1-tanx}$-$\frac{1}{1+tanx}$,則f($\frac{π}{8}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=lnx+ae-x,a∈R.
(1)若曲線y=f(x)在點(diǎn)A(1,f(1))處的切線直線2x-y-10=0平行,求a的值;
(2)若函數(shù)y=f(x)為定義域上的增函數(shù),求a的取值范圍;
(3)若a=-1,求證:f(x)+$\frac{2}{ex}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個交點(diǎn),若$\overrightarrow{FP}$=4$\overrightarrow{FQ}$,則|QF|=( 。
A.3B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直角三角形ABC中,三內(nèi)角成等差數(shù)列,最短邊的長度為1,P為△ABC內(nèi)的一點(diǎn),且∠APB=∠APC=∠CPB=120°,則PA+PB+PC=( 。
A.$\sqrt{11}$B.$\sqrt{10}$C.2$\sqrt{2}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.等差數(shù)列{an}中的a3,a2015是函數(shù)f(x)=x3-9x2+8x-1的極值點(diǎn),則log${\;}_{\frac{1}{3}}$a1009=(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)z滿足(1+i)z=1-z,則z的虛部為( 。
A.-$\frac{2}{5}$B.$\frac{2}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知不等式(ax+3)(x2-b)≤0對任意x∈(0,+∞)恒成立,其中a,b是整數(shù),則a+b的取值的集合為{-2,8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,sinA:sinB:sinC=4:5:7,點(diǎn)M為BC的中點(diǎn),AM=$\sqrt{11}$,則AC=$\frac{{5\sqrt{3}}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案