4.設(shè)函數(shù)$f(x)=|{x+\sqrt{a}}|-|{x-\sqrt{1-a}}$|.
(I)當(dāng)a=1時(shí),解不等式:f(x)≥$\frac{1}{2}$;
(II)若對任意a∈[0,1],不等式f(x)≥b解集不為空集,求實(shí)數(shù)b的取值范圍.

分析 (Ⅰ)通過討論x的范圍,去掉絕對值,求出不等式的解集即可;
(Ⅱ)問題轉(zhuǎn)化為b≤(f(x))max,根據(jù)不等式的性質(zhì)求出f(x)的最大值,從而求出b的范圍即可.

解答 解:(I)當(dāng)a=1時(shí),解不等式:$f(x)≥\frac{1}{2}$等價(jià)于$|{x+1}|-|x|≥\frac{1}{2}$,
①當(dāng)x≤-1時(shí),不等式化為$-x-1+x≥\frac{1}{2}$,無解;
②當(dāng)-1<x<0時(shí),不等式化為$x+1+x≥\frac{1}{2}$,解得$\frac{-1}{4}≤x<0$;
③當(dāng)x≥0時(shí),不等式化為$x+1-x≥\frac{1}{2}$,解得x≥0.
綜上所述,不等式$f(x)≥\frac{1}{2}$的解集為$[{-\frac{1}{4},+∞})$;
(II)∵不等式f(x)≥b解集不為空集,
∴b≤(f(x))max
∵$f(x)=|{x+\sqrt{a}}|-|{x-\sqrt{1-a}}|≤|{x+\sqrt{a}-x+\sqrt{1-a}}|=|{\sqrt{a}+\sqrt{1-a}}|=\sqrt{a}+\sqrt{1-a}$,
且僅當(dāng)$x≥\sqrt{1-a}$時(shí)取等號,∴${({f(x)})_{max}}=\sqrt{a}+\sqrt{1-a}$,
對任意a∈[0,1],不等式f(x)≥b解集不為空集,
∴$b≤{[{\sqrt{a}+\sqrt{1-a}}]_{min}}$,令$g(a)=\sqrt{a}+\sqrt{1-a}$,
∴${g^2}(a)=1+2\sqrt{a}\sqrt{1-a}≤1+2\sqrt{a(1-a)}=1+2\sqrt{-{{(a-\frac{1}{2})}^2}+\frac{1}{4}}$,
∵當(dāng)$a∈[0,\frac{1}{2}]$上遞增,$a∈[\frac{1}{2},1]$遞減,當(dāng)且僅當(dāng)a=0或a=1,g(a)min=1,
∴b的取值范圍為(-∞,1].

點(diǎn)評 本題考查了解絕對值不等式問題,考查分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知變量x,y的取值如表所示:
x456
y867
如果y與x線性相關(guān),且線性回歸方程為$\widehat{y}$=$\widehat$x+2,則$\widehat$的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知在10件產(chǎn)品中可能存在次品,從中抽取2件檢查,其次品數(shù)為ξ,已知P(ξ=1)=$\frac{16}{45}$,且該產(chǎn)品的次品率不超過40%,則這10件產(chǎn)品的次品率為( 。
A.10%B.20%C.30%D.40%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知${({\sqrt{2}x+\root{3}{3}y+z})^6}$的展開式中,系數(shù)為有理數(shù)的項(xiàng)的個(gè)數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.圓C1:x2+y2+2ax+a2-4=0(a≥0)與圓C2:x2+y2-2by+b2-1=0(b≥0)外切,則$\frac{a+6}$最大值為$\frac{1}{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.2017年兩會繼續(xù)關(guān)注了鄉(xiāng)村教師的問題,隨著城鄉(xiāng)發(fā)展失衡,鄉(xiāng)村教師待遇得不到保障,流失現(xiàn)象嚴(yán)重,教師短缺會嚴(yán)重影響鄉(xiāng)村孩子的教育問題,為此,某市今年要為兩所鄉(xiāng)村中學(xué)招聘儲備未來三年的教師,現(xiàn)在每招聘一名教師需要2萬元,若三年后教師嚴(yán)重短缺時(shí)再招聘,由于各種因素,則每招聘一名教師需要5萬元,已知現(xiàn)在該鄉(xiāng)村中學(xué)無多余教師,為決策應(yīng)招聘多少鄉(xiāng)村教師搜集并整理了該市100所鄉(xiāng)村中學(xué)在過去三年內(nèi)的教師流失數(shù),得到下面的柱狀圖:
以這100所鄉(xiāng)村中學(xué)流失教師數(shù)的頻率代替1所鄉(xiāng)村中學(xué)流失教師數(shù)發(fā)生的概率,記X表示兩所鄉(xiāng)村中學(xué)在過去三年共流失的教師數(shù),n表示今年為兩所鄉(xiāng)村中學(xué)招聘的教師數(shù).為保障鄉(xiāng)村孩子教育部受影響,若未來三年內(nèi)教師有短缺,則第四年馬上招聘.
(Ⅰ)求X的分布列;
(Ⅱ)若要求P(X≤n)≥0.5,確定n的最小值;
(Ⅲ)以未來四年內(nèi)招聘教師所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,滿足“f(xy)=f(x)+f(y)”的單調(diào)遞增函數(shù)是( 。
A.f(x)=log${\;}_{\frac{1}{2}}$xB.f(x)=x3C.f(x)=2xD.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若規(guī)定E={a1,a2,…,a10}的子集{at1,at2,…,ak}為E的第k個(gè)子集,其中$k={2^{{t_1}-1}}+{2^{{t_2}-1}}+…+{2^{{t_m}-1}}$,則E的第211個(gè)子集是{a1,a2,a5,a7,a8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,若AB=4,AC=6,D為邊BC的中點(diǎn),O為△ABC的外心,則$\overrightarrow{AO}•\overrightarrow{AD}$=(  )
A.13B.24C.26D.52

查看答案和解析>>

同步練習(xí)冊答案