已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),動(dòng)圓過點(diǎn)F2,且與圓F1相內(nèi)切.
(1)求點(diǎn)M的軌跡C的方程;
(2)若過原點(diǎn)的直線l與(1)中的曲線C交于A,B兩點(diǎn),且△ABF1的面積為數(shù)學(xué)公式,求直線l的方程.

解:(1)設(shè)圓M的半徑為r.
因?yàn)閳A過點(diǎn)F2,且與圓F1相內(nèi)切.
所以MF2=r,
所以MF1=4-MF2,即:MF1+MF2=4,
所以點(diǎn)M的軌跡C是以F1,F(xiàn)2為焦點(diǎn)的橢圓且設(shè)橢圓方程為,
其中2a=4,c=1,所以,
所以曲線C的方程

(2)因?yàn)橹本l過橢圓的中心,由橢圓的對(duì)稱性可知,
因?yàn)?img class='latex' src='http://thumb.1010pic.com/pic5/latex/537777.png' />,所以
不妨設(shè)點(diǎn)A(x1,y1)在x軸上方,則
所以,即:點(diǎn)A的坐標(biāo)為
所以直線l的斜率為,故所求直線方和程為x±2y=0.
分析:(1)設(shè)出M的半徑,依據(jù)題意列出關(guān)系MF1+MF2=4,可求軌跡C的方程.
(2)根據(jù)橢圓性質(zhì)以及△ABF1的面積為,可以求得A、B的坐標(biāo),再求直線l的方程.
點(diǎn)評(píng):本題考查圓與圓的位置關(guān)系,考查轉(zhuǎn)化思想,橢圓的定義,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),動(dòng)圓過點(diǎn)F2,且與圓F1相內(nèi)切.
(1)求點(diǎn)M的軌跡C的方程;
(2)若過原點(diǎn)的直線l與(1)中的曲線C交于A,B兩點(diǎn),且△ABF1的面積為
3
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:解答題

已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),動(dòng)圓M過點(diǎn)F2且與圓F1相內(nèi)切。
(1)求點(diǎn)M的軌跡C的方程;
(2)若過原點(diǎn)的直線l與(1)中的曲線C交于A,B兩點(diǎn),且△ABF1的面積為,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省南京市中學(xué)高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),動(dòng)圓過點(diǎn)F2,且與圓F1相內(nèi)切.
(1)求點(diǎn)M的軌跡C的方程;
(2)若過原點(diǎn)的直線l與(1)中的曲線C交于A,B兩點(diǎn),且△ABF1的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年數(shù)學(xué)之友高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),動(dòng)圓過點(diǎn)F2,且與圓F1相內(nèi)切.
(1)求點(diǎn)M的軌跡C的方程;
(2)若過原點(diǎn)的直線l與(1)中的曲線C交于A,B兩點(diǎn),且△ABF1的面積為,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案