【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開線”,曲線與軸有兩個(gè)焦點(diǎn),且經(jīng)過點(diǎn)
(1)求的值;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求的最小值;
(3)過且斜率為的直線與“羽毛球形線”相交于點(diǎn)三點(diǎn),問是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說明理由。
【答案】(1);(2);(3)存在,且,詳見解析
【解析】
(1)將代入求出,再由與軸交點(diǎn)坐標(biāo),代入圓的方程,即可求出;
(2)先設(shè),得到,分別討論,和兩種情況,由拋物線與圓的方程,即可求出結(jié)果;
(3)先由題意得到的方程,與拋物線聯(lián)立,求出;與圓聯(lián)立,求出,根據(jù)得到,化簡(jiǎn)得到關(guān)于的方程,求解,即可得出結(jié)果.
(1)由題意,將代入,得到;所以拋物線;
又與軸交于,所以,代入圓的方程,可得;
所以,;
(2)設(shè),因?yàn)?/span>,則,
當(dāng)時(shí),,所以,
所以時(shí),;
當(dāng)時(shí),,,
所以時(shí),;
而,所以的最小值為;
(3)由題意,可得:的方程為,
由,整理得:,
解得或,即;
由,整理得:
解得:或,則,
由,可得,
即,整理得,解得(由題意,負(fù)值舍去)
因此,存在實(shí)數(shù),使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試
方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試
公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零復(fù)數(shù),,;若,,滿足,.
(1)求的值;
(2)若所對(duì)應(yīng)點(diǎn)在圓,求所對(duì)應(yīng)的點(diǎn)的軌跡;
(3)是否存在這樣的直線,對(duì)應(yīng)點(diǎn)在上,對(duì)應(yīng)點(diǎn)也在直線上?若存在,求出所有這些直線;若不存在,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校的1000名高三學(xué)生參加四門學(xué)科的選拔考試,每門試卷共有10道題,每題10分,規(guī)定:每門錯(cuò)題成績(jī)記為,錯(cuò)題成績(jī)記為,錯(cuò)題成績(jī)記為,錯(cuò)題成績(jī)記為,在錄取時(shí),記為90分,記為80分,記為60分,記為50分.
根據(jù)模擬成績(jī),每一門都有如下統(tǒng)計(jì)表:
答錯(cuò) 題數(shù) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | 10 | 90 | 100 | 150 | 150 | 200 | 100 | 100 | 50 | 49 | 1 |
已知選拔性考試成績(jī)與模擬成績(jī)基本吻合.
(1)設(shè)為高三學(xué)生一門學(xué)科的得分,求的分布列和數(shù)學(xué)期望;
(2)預(yù)測(cè)考生4門總分為320概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生參加社會(huì)實(shí)踐活動(dòng),對(duì)某公司1月份至6月份銷售某種配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)x和銷售量y之間的一組數(shù)據(jù)如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(jià)(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷售收入-成本).
參考公式:回歸直線方程,其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,且,其中,,分別是,,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①;②;③面;④面,
其中恒成立的為( )
A. ①③ B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點(diǎn),,四邊形為矩形,線段交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),.若圓上存在唯一點(diǎn),使得直線,在軸上的截距之積為,則實(shí)數(shù)的值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上且以4為周期的奇函數(shù),當(dāng)時(shí),(為自然對(duì)數(shù)的底),則函數(shù)在區(qū)間上的所有零點(diǎn)之和為( )
A. 6B. 8C. 12D. 14
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com