如果方程表示焦點在軸上的橢圓,則的取值范圍是  ( 。
A.B.C.D.
D

試題分析:由題意可得:方程表示焦點在y軸上的橢圓,所以4-m>0,m-3>0并且m-3>4-m,解得:<m<4.故選D.
點評:解決該試題的關(guān)鍵是理解橢圓的焦點位置取決于分母中那個大,則對應(yīng)的焦點位置在那個軸上來得到。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,橢圓的左焦點為,右焦點為,離心率.過的直線交橢圓于兩點,且△的周長為

(Ⅰ)求橢圓的方程.
(Ⅱ)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點.試探究:在坐標(biāo)平面內(nèi)是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線與橢圓交于兩點,已知,若且橢圓的離心率,又橢圓經(jīng)過點,為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心在原點,離心率,且它的一個焦點與拋物線的焦點重合, 則此橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
橢圓:的左、右頂點分別、,橢圓過點且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于兩點的任意一點軸,為垂足,延長到點,且,過點作直線軸,連結(jié)并延長交直線于點,線段的中點記為點.
①求點所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左焦點為, 點在橢圓上, 如果線段的中點軸的
正半軸上, 那么點的坐標(biāo)是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)平面內(nèi),已知點,動點滿足條件:,則點的軌跡方程是(    ).
A.B.C.()D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,左右焦點分別為,
(1)若上一點滿足,求的面積;
(2)直線于點,線段的中點為,求直線的方程。

查看答案和解析>>

同步練習(xí)冊答案