曲線y=x2與直線y=2x所圍成圖形的面積為( 。
A、
16
3
B、
8
3
C、
4
3
D、
2
3
考點:定積分在求面積中的應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:聯(lián)立解方程組,得到曲線y=x2及直線y=2x的交點是(0,0)和A(2,4),由此可得兩個圖象圍成的面積等于函數(shù)y=2x-x2在[0,2]上的積分值,根據(jù)定積分計算公式加以計算,即可得到所求面積.
解答: 解:由
y=x2
y=2x
,解得曲線y=x2與直線y=2x的圖象交點為(0,0),(2,4)
因此,曲線y=x2及直線y=2x所圍成的封閉圖形的面積是
S=
2
0
(2x-x2)dx=(x2-
1
3
x3
|
2
0
=
4
3
;
故選C.
點評:本題考查了定積分的幾何意義和定積分計算公式等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中an的前項和為Sn若有Sn=n2-4n+5則{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱棱錐P-ABCD的底面邊長和高都為2,O是底面ABCD 的中心,以O(shè)為球心的球與四棱錐P-ABCD 的各個側(cè)面都相切,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3+2x-x2
的定義域為A,集合B={x|x2-2mx+m2-9≤0}.
(Ⅰ)若A∩B=[2,3],求實數(shù)m的值;
(Ⅱ)若A⊆CRB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a4+a10=6,則此數(shù)列前13項的和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知4a=
1
2
,lgx=a,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正實數(shù)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則log
3
1
a
+
2
b
)的最小值為(  )
A、
1
2
B、3
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>2或x<-1},B={x|a≤x≤b},A∪B=R,A∩B={x|2<x≤4},則
b
a
的值( 。
A、-4B、-3C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的圖象經(jīng)過點(4,3),它在x軸上截得的線段長為2,并且對任意x∈R,都有f(2-x)=f(2+x),求函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案