【題目】在ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.

【答案】
(1)

解:由正弦定理設(shè) =k

= = =

整理求得sin(A+B)=2sin(B+C)

又A+B+C=π

∴sinC=2sinA,即 =2


(2)

解:由余弦定理可知cosB= =

由(1)可知 = =2②

再由b=2,①②聯(lián)立求得c=2,a=1

sinB= =

∴S= acsinB=


【解析】(1)利用正弦定理把題設(shè)等式中的邊轉(zhuǎn)化成角的正弦,整理后可求得sinC和sinA的關(guān)系式,則 的值可得.(2)先通過余弦定理可求得a和c的關(guān)系式,同時利用(Ⅰ)中的結(jié)論和正弦定理求得a和c的另一關(guān)系式,最后聯(lián)立求得a和c,利用三角形面積公式即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且,又?jǐn)?shù)列滿足: .

(1)求數(shù)列的通項公式;

(2)當(dāng)為何值時,數(shù)列是等比數(shù)列?此時數(shù)列的前項和為,若存在,使m<成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B分別是直線y=x和y=-x上的兩個動點,線段AB的長為,D是AB的中點.

(1)求動點D的軌跡C的方程;

(2)若過點(1,0)的直線l與曲線C交于不同兩點P、Q,當(dāng)|PQ|=3時,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年電子商務(wù)蓬勃發(fā)展,在2017年的“年貨節(jié)”期間,一網(wǎng)絡(luò)購物平臺推銷了三種商品,某網(wǎng)購者決定搶購這三種商品,假設(shè)該名網(wǎng)購者都參與了三種商品的搶購,搶購成功與否相互獨立,且不重復(fù)搶購?fù)环N商品,對三種商品的搶購成功的概率分別為 ,已知三件商品都被搶購成功的概率為,至少有一件商品被搶購成功的概率為 .

(1)求的值;

(2)若購物平臺準(zhǔn)備對搶購成功的三件商品進(jìn)行優(yōu)惠減免活動, 商品搶購成功減免百元, 商品搶購成功減免百元, 商品搶購成功減免百元,求該名網(wǎng)購者獲得減免的總金額(單位:百元)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項的和Sn,點(n,Sn)在函數(shù)=2x2+4x圖象上

(1)證明是等差數(shù)列;

(2)若函數(shù),數(shù)列{bn}滿足bn=,記cn=anbn,求數(shù)列前n項和Tn

(3)是否存在實數(shù)λ,使得當(dāng)x≤λ時,f(x)=﹣x2+4x﹣≤0對任意n∈N*恒成立?若存在,求出最大的實數(shù)λ,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}滿足a1=2,a2=4(a3﹣a4),數(shù)列{bn}滿足bn=3﹣2log2an
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Tn;
(3)若λ>0,求對所有的正整數(shù)n都有2λ2﹣kλ+2>a2nbn成立的k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,若f(A)=4,b=1,△ABC的面積為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商場決定從種服裝、種家電、種日用品中,選出種商品進(jìn)行促銷活動.

(1)試求選出種商品中至少有一種是家電的概率;

(2)商場對選出的某商品采用抽獎方式進(jìn)行促銷,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,規(guī)定購買該商品的顧客有次抽獎的機(jī)會: 若中一次獎,則獲得數(shù)額為元的獎金;若中兩次獎,則獲得數(shù)額為元的獎金;若中三次獎,則共獲得數(shù)額為 元的獎金. 假設(shè)顧客每次抽獎中獎的概率都是,請問: 商場將獎金數(shù)額最高定為多少元,才能使促銷方案對商場有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[﹣ , ]時,f(x)的最小值是﹣4,求此時函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊答案