【題目】設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的函數(shù),并且滿足下面三個(gè)條件: ①對(duì)任意正數(shù)x,y,都有f(xy)=f(x)+f(y);
②當(dāng)x>1時(shí),f(x)>0;
③f(3)=1,
(1)求f(1), 的值;
(2)判斷函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)性,并用定義給出證明;
(3)對(duì)于定義域內(nèi)的任意實(shí)數(shù)x,f(kx)+f(4﹣x)<2(k為常數(shù),且k>0)恒成立,求正實(shí)數(shù)k的取值范圍.

【答案】
(1)解:令x=y=1,得f(1)=0,令x=3, ,

,所以


(2)解:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增,證明如下

任取x1,x2∈(0,+∞),且x1<x2

則f(x1)﹣f(x2)= ,

因?yàn)閤1,x2∈(0,+∞),且x1<x2,則 ,又x>1時(shí),f(x)>0,

所以 ,即f(x1)<f(x2),

函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增


(3)解:f(9)=f(3)+f(3)=2,

由(2)知函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增

不等式f(kx)+f(4﹣x)<2可化為f(kx(4﹣x))<f(9),因?yàn)閗>0

不等式故可化為 ,

由題可得,0<x<4時(shí),kx(4﹣x)<9恒成立,

即0<x<4時(shí), 恒成立, 0<x<4,y=x(4﹣x)∈(0,4],

所以

所以


【解析】(1)利用賦值法即可求f(1), 的值;(2)根據(jù)函數(shù)單調(diào)性的定義即可判斷函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)性;(3)根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)將不等式進(jìn)行轉(zhuǎn)化求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)A是單位圓和x軸正半軸的交點(diǎn),P,Q是單位圓上兩點(diǎn),O是坐標(biāo)原點(diǎn),且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點(diǎn)Q的坐標(biāo)是 ,求 的值;
(Ⅱ)設(shè)函數(shù) ,求f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ 在R上是奇函數(shù).
(1)求a;
(2)對(duì)x∈(0,1],不等式sf(x)≥2x﹣1恒成立,求實(shí)數(shù)s的取值范圍;
(3)令g(x)= ,若關(guān)于x的方程g(2x)﹣mg(x+1)=0有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意 恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α< , (Ⅰ)求tan2α的值;
(Ⅱ)求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列前三項(xiàng)為a,4,3a,前n項(xiàng)的和為Sn , 若Sk=90.
(1)求a及k的值;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列選項(xiàng)中,說法正確的個(gè)數(shù)是( )

①命題“”的否定為“”;

②命題“在中, ,則”的逆否命題為真命題;

③設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的充分必要條件;

④若統(tǒng)計(jì)數(shù)據(jù)的方差為,則的方差為;

⑤若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)絕對(duì)值越接近1.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程fi(x)(i=1,2,3,4)關(guān)于時(shí)間x(x≥0)的函數(shù)關(guān)系式分別為f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論: ①當(dāng)x>1時(shí),甲走在最前面;
②當(dāng)x>1時(shí),乙走在最前面;
③當(dāng)0<x<1時(shí),丁走在最前面,當(dāng)x>1時(shí),丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號(hào)為(把正確結(jié)論的序號(hào)都填上,多填或少填均不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)M(1,2),且直線l與x軸正半軸和y軸的正半軸交點(diǎn)分別是A、B,(如圖,注意直線l與坐標(biāo)軸的交點(diǎn)都在正半軸上)

(1)若三角形AOB的面積是4,求直線l的方程.
(2)求過點(diǎn)N(0,1)且與直線l垂直的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案