定義:已知函數(shù)f(x)與g(x),若存在一條直線(xiàn)y=kx +b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿(mǎn)足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱(chēng)直線(xiàn)y=kx +b為曲線(xiàn)f(x)與g(x)的“左同旁切線(xiàn)”.已知

    (I)證明:直線(xiàn)y=x-l是f(x)與g(x)的“左同旁切線(xiàn)”;

    (Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請(qǐng)結(jié)合(I)中的結(jié)論證明:

 

【答案】

(Ⅰ)見(jiàn)解析   (Ⅱ)見(jiàn)解析

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,研究函數(shù)的單調(diào)性和最值,以及函數(shù)與不等式的綜合運(yùn)用。

(Ⅰ)要證明結(jié)論即證.

構(gòu)造函數(shù)令,則,分析最值得到結(jié)論。

再令分析最值得到結(jié)論

綜上可知故對(duì)任意,恒有成立,即直線(xiàn)的“左同旁切線(xiàn)”

(Ⅱ)因?yàn)楦鶕?jù)已知函數(shù),得到導(dǎo)函數(shù),所以,所以.采用作差法,利用(Ⅰ)的結(jié)論因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415175583426959/SYS201208241518308524475697_DA.files/image012.png">得到。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:已知函數(shù)f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱(chēng)函數(shù)f(x)在[m,n](m<n)上具有“DK”性質(zhì).已知f(x)=ax2-|x|+2a-1
(1)若a=1,判斷函數(shù)f(x)在[1,2]上是否具有“DK”性質(zhì),說(shuō)明理由.
(2)若f(x)在[1,2]上具有“DK”性質(zhì),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線(xiàn)y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿(mǎn)足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱(chēng)直線(xiàn)y=kx+b為曲線(xiàn)f(x)與g(x)的“左同旁切線(xiàn)”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線(xiàn)y=x-l是f(x)與g(x)的“左同旁切線(xiàn)”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請(qǐng)結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線(xiàn)y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿(mǎn)足f(x)≤g(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱(chēng)直線(xiàn)y=kx+b為曲線(xiàn)f(x)與g(x)的“左同旁切線(xiàn)”.已知f(x)=lnx,g(x)=1-
1
x

(1)試探求f(x)與g(x)是否存在“左同旁切線(xiàn)”,若存在,請(qǐng)求出左同旁切線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.
(2)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點(diǎn),0<x1<x2,且存在實(shí)數(shù)x3>0,使得f(x3)=
f(x2)-f(x1)
x2-x1
,證明:x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省云浮市高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:填空題

定義運(yùn)算已知函數(shù)f(x)=x2⊕x,求f(2)=   

查看答案和解析>>

同步練習(xí)冊(cè)答案