18.設(shè)p:0<x<5,q:x2-4x-21<0,那么p是q的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 q:x2-4x-21<0,解得-3<x<7,即可判斷出結(jié)論.

解答 解:q:x2-4x-21<0,解得-3<x<7,
又p:0<x<5,
那么p是q的充分不必要條件.
故選:A.

點評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知異面直線a與b所成角為60°,過空間內(nèi)一定點P且與直線a、b所成角均為60°的直線有( 。l.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,點D是棱B1C1的中點.請建立適當(dāng)?shù)淖鴺?biāo)系,求解下列問題:
(Ⅰ)求證:異面直線A1D與BC互相垂直;
(Ⅱ)求二面角(鈍角)D-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=e|x|,函數(shù)g(x)=$\left\{\begin{array}{l}{ex,x≤4}\\{4{e}^{5-x},x>4}\end{array}\right.$對任意的x∈[1,m](m>1),都有f(x-2)≤g(x),則m的取值范圍是( 。
A.(1,2+ln2]B.(1,$\frac{7}{2}$+ln2]C.[ln2,2)D.(2,$\frac{7}{2}$+ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平行六面體ABCD-A1B1C1D1中,以頂點A為端點的三條棱長都等于2,且兩兩夾角為60°,則對角線BD1的長度為( 。
A.$2\sqrt{2}$B.$\sqrt{2}$C.$2\sqrt{6}$D.$\frac{{\sqrt{3}}}{2}+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.約束條件為$\left\{\begin{array}{l}{x+y-5≤0}\\{x-y-k≤0}\\{x≥0,y≥0}\end{array}\right.$,目標(biāo)函數(shù)Z=2x-y,則Z的最大值是(  )
A.-4B.4C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知A(2,5,-6),點P在y軸上,|PA|=7,則點P的坐標(biāo)是( 。
A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,-8,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)A(1,0),B(2,1),C是拋物線y2=4x上的動點.
(1)求△ABC周長的最小值;
(2)若C位于直線AB左上方,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點F1,F(xiàn)2分別是雙曲線 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過F1且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABF2是銳角三角形,則該雙曲線離心率的取值范圍是(1,1+$\sqrt{2}$);若△ABF2是直角三角形,則該雙曲線的漸近線的斜率為$\sqrt{2+2\sqrt{2}}$.

查看答案和解析>>

同步練習(xí)冊答案