9.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,點(diǎn)D是棱B1C1的中點(diǎn).請(qǐng)建立適當(dāng)?shù)淖鴺?biāo)系,求解下列問(wèn)題:
(Ⅰ)求證:異面直線A1D與BC互相垂直;
(Ⅱ)求二面角(鈍角)D-A1C-A的余弦值.

分析 (Ⅰ)AB,AC,AA1兩兩互相垂直,建立直角坐標(biāo)系A(chǔ)-xyz,設(shè)AB=1,求出相關(guān)點(diǎn)的坐標(biāo),通過(guò)證明$\overrightarrow{{A}_{1}D}•\overrightarrow{BC}$=0,即可證明異面直線A1D與BC互相垂直.
(Ⅱ)求出平面DA1C的法向量,平面ACC1A1的法向量利用空間向量的數(shù)量積求解即可.

解答 解:因?yàn)閭?cè)面ABB1A1C1,ACC1A1均為正方形,∠BAC=90°,
所以AB,AC,AA1兩兩互相垂直,如圖所示建立直角坐標(biāo)系A(chǔ)-xyz…1分
設(shè)AB=1,則C(0,1,0),B(1,0,0),A1(0,0,1),D($\frac{1}{2}$,$\frac{1}{2}$,1).…3分
(Ⅰ)證明:由上可知:$\overrightarrow{{A_1}D}=({\frac{1}{2},\frac{1}{2},0})$,$\overrightarrow{BC}=({-1,1,0})$,…5分
所以$\overrightarrow{{A_1}D}•\overrightarrow{BC}=({-1,1,0})•({\frac{1}{2},\frac{1}{2},0})=-\frac{1}{2}+\frac{1}{2}+0=0$,…6分
所以$\overrightarrow{{A_1}D}⊥\overrightarrow{BC}$,
所以,異面直線A1D與BC互相垂直.…7分
(Ⅱ)解:$\overrightarrow{{A}_{1}D}$=($\frac{1}{2}$,$\frac{1}{2}$,0),$\overrightarrow{{A}_{1}C}$=(0,1,-1),…9分
設(shè)平面DA1C的法向量為$\overrightarrow{n}$=(x,y,z),則有

$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=0}\end{array}\right.$,$\left\{\begin{array}{l}{x+y=0}\\{y-z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{n}$=(1,-1,-1)…10分
又因?yàn)锳B⊥平面ACC1A1,所以平面ACC1A1的法向量為$\overrightarrow{AB}$=(1,0,0),…11分
∴cos$<\overrightarrow{n},\overrightarrow{AB}>$=$|\frac{\overrightarrow{n}•\overrightarrow{AB}}{|\overrightarrow{n}||\overrightarrow{AB}|}|$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
因?yàn)槎娼荄-A1C-A是鈍角,
所以,二面角D-A1C-A的余弦值為$-\frac{{\sqrt{3}}}{3}$.…12分.

點(diǎn)評(píng) 本題考查二面角的平面角的求法,直線與直線所成角的求法,考查空間向量的應(yīng)用,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一個(gè)正方體的表面積與一個(gè)球體的表面積相等,那么它們的體積比是( 。
A.$\frac{\sqrt{6π}}{6}$B.$\frac{\sqrt{π}}{2}$C.$\frac{\sqrt{2π}}{2}$D.$\frac{3\sqrt{π}}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.sin20°sin80°-cos160°sin10°=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),$\overrightarrow{c}$=(-2,4),則$\overrightarrow{c}$等于(  )
A.-$\overrightarrow{a}$+3$\overrightarrow$B.$\overrightarrow{a}$-3$\overrightarrow$C.3$\overrightarrow{a}$-$\overrightarrow$D.-3$\overrightarrow{a}$+$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中a>0且a≠1,設(shè)h(x)=f(x)-g(x)
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性并說(shuō)明理由
(2)解不等式h(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知直線l:y=k(x-n)與拋物線y2=4x交于A(x1,y1),B(x2,y2)(x1x2≠0)兩點(diǎn).
(Ⅰ)若直線l過(guò)拋物線的焦點(diǎn)F,求x1x2的值;
(Ⅱ)若x1x2+y1y2=0,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.點(diǎn)M,N是拋物線E上的兩動(dòng)點(diǎn),M到點(diǎn)(2,0)的距離比到直線x+3=0的距離少1,點(diǎn)O(M,N與O不重合)是坐標(biāo)原點(diǎn),OM⊥ON.
(Ⅰ)求拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)在x軸上是否存在定點(diǎn)總在直線MN上,若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)p:0<x<5,q:x2-4x-21<0,那么p是q的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.平面內(nèi)到x軸與到y(tǒng)軸的距離之和為1的點(diǎn)的軌跡為( 。
A.點(diǎn)B.線段C.正方形D.

查看答案和解析>>

同步練習(xí)冊(cè)答案