設(shè)a,b為正實(shí)數(shù),下列結(jié)論正確的是( 。
①若a2-b2=1,則a-b<1;        
②若
1
b
-
1
a
=1
,則a-b<1;
③若|
a
-
b
|=1
,則|a-b|<1;  
④若|a3-b3|=1,則|a-b|<1.
分析:①將a2-b2=1,分解變形為(a+1)(a-1)=b2,即可證明a-1<b,即a-b<1;②③可通過舉反例的方法證明其錯誤性;④若a>b,去掉絕對值,將a3-b3=1分解變形為(a-1)(a2+1+a)=b3,即可證明a-b<1,同理當(dāng)a<b時也可證明b-a<1,從而命題④正確.
解答:解:①若a2-b2=1,則a2-1=b2,即(a+1)(a-1)=b2,
∵a+1>a-1,∴a-1<b,即a-b<1,①正確; ②若若
1
b
-
1
a
=1
,可取a=7,b=
7
8
,則a-b>1,∴②錯誤;
③若若|
a
-
b
|=1
,則可取a=9,b=4,而|a-b|=5>1,∴③錯誤;
④由|a3-b3|=1,
若a>b,則a3-b3=1,即a3-1=b3,即(a-1)(a2+1+a)=b3,
∵a2+1+a>b2,∴a-1<b,即a-b<1
若a<b,則b3-a3=1,即b3-1=a3,即(b-1)(b2+1+b)=a3,
∵b2+1+b>a2,∴b-1<a,即b-a<1
∴|a-b|<1∴④正確;
所以正確的答案為①④.
故選D.
點(diǎn)評:本題主要考查了不等式的證明方法,間接證明和直接證明的方法,放縮法和舉反例法證明不等式,演繹推理能力,有一定難度,屬中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長線交⊙O于N,過
N點(diǎn)的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設(shè)a,b,c均為正實(shí)數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將選題號填入括號中.
(1)選修4一2:矩陣與變換
設(shè)矩陣M所對應(yīng)的變換是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)當(dāng)α=
π
3
時,求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時,求P點(diǎn)的軌跡的參數(shù)方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實(shí)數(shù),且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從A,B,C,D四個中選做2個,每題10分,共20分

A.選修4—1 幾何證明選講

如圖,設(shè)△ABC的外接圓的切線AEBC的延長線交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D。求證:。

B.選修4—2 矩陣與變換

在平面直角坐標(biāo)系中,設(shè)橢圓在矩陣對應(yīng)的變換作用下得到曲線F,求F的方程。

C.選修4—4 參數(shù)方程與極坐標(biāo)

在平面直角坐標(biāo)系中,點(diǎn)是橢圓上的一個動點(diǎn),求的最大值。

D.選修4—5 不等式證明選講

設(shè)a,b,c為正實(shí)數(shù),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試題(江蘇卷) 題型:解答題

從A,B,C,D四個中選做2個,每題10分,共20分

A.選修4—1 幾何證明選講
如圖,設(shè)△ABC的外接圓的切線AEBC的延長線交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D。求證:。
B.選修4—2 矩陣與變換
在平面直角坐標(biāo)系中,設(shè)橢圓在矩陣對應(yīng)的變換作用下得到曲線F,求F的方程。
C.選修4—4 參數(shù)方程與極坐標(biāo)
在平面直角坐標(biāo)系中,點(diǎn)是橢圓上的一個動點(diǎn),求的最大值。
D.選修4—5 不等式證明選講
設(shè)ab,c為正實(shí)數(shù),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試題(江蘇卷) 題型:解答題

從A,B,C,D四個中選做2個,每題10分,共20分

A.選修4—1 幾何證明選講

如圖,設(shè)△ABC的外接圓的切線AEBC的延長線交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D。求證:

B.選修4—2 矩陣與變換

在平面直角坐標(biāo)系中,設(shè)橢圓在矩陣對應(yīng)的變換作用下得到曲線F,求F的方程。

C.選修4—4 參數(shù)方程與極坐標(biāo)

在平面直角坐標(biāo)系中,點(diǎn)是橢圓上的一個動點(diǎn),求的最大值。

D.選修4—5 不等式證明選講

設(shè)ab,c為正實(shí)數(shù),求證:。

 

查看答案和解析>>

同步練習(xí)冊答案