函數(shù)f(x)的定義域為D,若滿足:①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[a,b]⊆D,(a<b)使得f(x)在[a,b]上的值域也是[a,b],則稱y=f(x)為閉函數(shù). 若f(x)=k+
x
是閉函數(shù),則實數(shù)k的取值范圍是( 。
A、(-
1
4
,+∞)
B、[-
1
2
,+∞)
C、[-
1
2
,-
1
4
)
D、(-
1
4
,0]
分析:先判定函數(shù)的單調(diào)性,然后根據(jù)條件建立方程組,轉(zhuǎn)化成使方程x2-x-k=0有兩個相異的非負實根,最后建立關于k的不等式,解之即可.
解答:解:f(x)=k+
x
是單調(diào)增函數(shù)
a
+k=a
b
+k=b
即使方程x2-x-k=0有兩個相異的非負實根
令f(x)=x2-x-k
f(0)≥0
△=1+4k>0
解得k∈(-
1
4
,0]

故選D
點評:本題主要考查了函數(shù)的定義域及其求法,以及函數(shù)的值域,是高考的熱點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為{x|x≠0},且滿足對于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數(shù),解關于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域是[0,1),則F(x)=f[log 
12
(3-x)
]的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域為(-1,1),它在定義域內(nèi)既是奇函數(shù)又是增函數(shù),且f(a-3)+f(4-2a)<0,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域為[-1,2],則函數(shù)
f(x+2)
x
的定義域為(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步練習冊答案