【題目】已知函數(shù)

(1)若的極值點,求的極大值;

(2)求實數(shù)的范圍,使得恒成立.

【答案】(1)的極大值為;(2)時,恒成立.

【解析】試題分析:(1)由于x=2是f(x)的極值點,則f′(3)=0求出a,進而求出f′(x)0得到函數(shù)的增區(qū)間,求出f′(x)0得到函數(shù)的減區(qū)間,即可得到函數(shù)的極大值;

(2)由于f(x)1恒成立,即x0時,x2﹣(a+1)x+alnx≥0恒成立,設g(x)=x2﹣(a+1)x+alnx,求出函數(shù)的導數(shù),分類討論參數(shù)a,得到函數(shù)g(x)的最小值0,即可得到a的范圍.

(1)

的極值點,解得

時,

變化時,

的極大值為

(2)要使得恒成立,即時,恒成立,

,則,

(。┊時,由得函數(shù)單調減區(qū)間為,由得函數(shù)單調增區(qū)間為,此時,得

(ⅱ)當時,由得函數(shù)單調減區(qū)間為,由得函數(shù)單調增區(qū)間為,此時不合題意.

(ⅲ)當時,上單調遞增,此時不合題意

(ⅳ)當時,由得函數(shù)單調減區(qū)間為,由得函數(shù)單調增區(qū)間為,此時不合題意.

綜上所述:時,恒成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設有兩個命題p:不等式|x|+|x-1|≥m的解集為R;q:函數(shù) 是減函數(shù).若這兩個命題中有且只有一個真命題,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)3至5月份的數(shù)據(jù),求出關于的線性回歸方程

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+cx的極值點為x=﹣ 和x=1
(1)求b,c的值與f(x)的單調區(qū)間
(2)當x∈[﹣1,2]時,不等式f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一只小蜜蜂在一個棱長為3的正方體玻璃容器內隨機飛行,若蜜蜂在飛行過程中與正方體玻璃容器6個表面中至少有一個的距離不大于1,則就有可能撞到玻璃上面不安全,若始終保持與正方體玻璃容器6個表面的距離均大于1,則飛行是安全的,假設蜜蜂在正方體玻璃容器內飛行到每一位置可能性相同,那么蜜蜂飛行是安全的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

(Ⅰ)求的值;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市連鎖店統(tǒng)計了城市甲、乙的各16臺自動售貨機在中午12:00至13:00間的銷售金額,并用莖葉圖表示如圖.則有(
A.甲城銷售額多,乙城不夠穩(wěn)定
B.甲城銷售額多,乙城穩(wěn)定
C.乙城銷售額多,甲城穩(wěn)定
D.乙城銷售額多,甲城不夠穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內的圖象上存在兩點,在這兩點處的切線互相垂直,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點P是圓O:x2+y2=1與x軸正半軸的交點,半徑OA在x軸的上方,現(xiàn)將半徑OA繞原點O逆時針旋轉 得到半徑OB.設∠POA=x(0<x<π),
(1)若 ,求點B的坐標;
(2)求函數(shù)f(x)的最小值,并求此時x的值.

查看答案和解析>>

同步練習冊答案