已知拋物線(p>0)的焦點F恰好是雙曲線的右焦點,且兩條曲線的交點的連線過F,則該雙曲線的離心率為(     )  
A.B.2C.+1D.-1
C

試題分析:如圖所示,,∵兩條曲線交點的連線過點F,∴兩條曲線交點為(),代入雙曲線方程得1,又,化簡得,,故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點為動點,分別為橢圓的左、右焦點.已知為等腰三角形.

(1)求橢圓的離心率;
(2)設(shè)直線與橢圓相交于、兩點,是直線上的點,滿足,求點的軌跡
方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為,右焦點為,直線過點,且垂直于橢圓的長軸,動直線垂直于,垂足為點,線段的垂直平分線交于點,求點的軌跡的方程;
(3)設(shè)軸交于點,不同的兩點上(也不重合),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為雙曲線的左焦點,在軸上點的右側(cè)有一點,以為直徑的圓與雙曲線左、右兩支在軸上方的交點分別為,則的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點F作一直線l交拋物線于A、B兩點,以AB為直徑的圓與該拋物線的準(zhǔn)線l的位置關(guān)系為(     )
A. 相交 B. 相離 C. 相切 D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1,F(xiàn)2是雙曲線的左、右焦點,過左焦點F1的直線與雙曲線C的左、右兩支分別交于A,B兩點,若,則雙曲線的離心率是(   )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖, 在等腰梯形ABCD中, AB//CD, 且AB="2CD," 設(shè)∠DAB=, ∈(0, ), 以A, B為焦點且過點D的雙曲線的離心率為e1, 以C, D為焦點且過點A的橢圓的離心率為e2, 設(shè)
的大致圖像是 (    )
  

查看答案和解析>>

同步練習(xí)冊答案