已知⊙M的圓心在第一象限,過原點(diǎn)O被x軸截得的弦長(zhǎng)為6,且與直線3x+y=0相切,則圓M的方程為
 
考點(diǎn):圓的切線方程
專題:直線與圓
分析:設(shè)出圓心坐標(biāo),利用直線與圓相切,求出圓的圓心與半徑,即可得到圓的方程.
解答: 解:⊙M的圓心在第一象限,過原點(diǎn)O被x軸截得的弦長(zhǎng)為6,
∴設(shè)圓的圓心(3,b),
∵圓與直線3x+y=0相切,
∴-3×
b
3
=-1,∴b=1,
圓的圓心為(3,1),
圓的半徑為:
32+12
=
10

所求圓的方程為:(x-3)2+(y-1)2=10.
故答案為:(x-3)2+(y-1)2=10.
點(diǎn)評(píng):本題考查圓的標(biāo)準(zhǔn)方程的求法,圓的切線的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+xlnx.
(1)當(dāng)a=1時(shí),函數(shù)f(x)的圖象在點(diǎn)P(1,f(1))處的切線方程;
(2)當(dāng)a<0時(shí),解不等式f(x)<0;
(3)當(dāng)a=1時(shí),對(duì)x∈(1,+∞),直線y=k(x-1)恒在函數(shù)y=f(x)的圖象下方.求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:(1)f(x)=x+
1
x
(0<x<1)的最小值為2;
(2)“-1<x<2”是“x>-2”的充分不必要條件;
(3)在平面直角坐標(biāo)系xOy中,記不等式組
x-y≥0
x+y≤0
所表示的平面區(qū)域?yàn)镈,在映射T:
u=x+y
v=x-y
的作用下,區(qū)域D內(nèi)的點(diǎn)(x,y)對(duì)應(yīng)的象為點(diǎn)(u,v).因此在映射T的作用下,點(diǎn)(-1,1)的原象是(-2,0);
(4)對(duì)于函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三邊長(zhǎng),則f(x)為“可構(gòu)造三角形函數(shù)”,據(jù)些定義可知函數(shù)f(x)=2,(x∈R)是“可構(gòu)造三角表函數(shù)”,其中正確的命題有
 
(請(qǐng)把所有正確的命題的序號(hào)都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(x-4)=f(x),且在區(qū)間[0,2]上f(x)=x,若函數(shù)y=f(x)-logmx有三個(gè)不同的零點(diǎn),則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(-2,-3)圓Q:(x-4)2+(y-2)2=9上有兩點(diǎn)A,B且滿足∠PAQ=∠PBQ=
π
2
,
則直線AB的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0.當(dāng)x>0時(shí),有f(x)>xf′(x)恒成立,則不等式x2f(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知菱形ABCD中,AB=1,∠DAB=60°,
DC
=2
EC
,則
AE
BD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x滿足|x+1|+|x-5|=6,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=1+i(i是虛數(shù)單位),則
2
z
+
.
z
=( 。
A、2B、2+i
C、2-iD、2-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案