【題目】已知數(shù)列{bn}滿足bn=| |,其中a1=2,an+1=
(1)求b1 , b2 , b3 , 并猜想bn的表達(dá)式(不必寫(xiě)出證明過(guò)程);
(2)設(shè)cn= ,數(shù)列|cn|的前項(xiàng)和為Sn , 求證Sn< .
【答案】
(1)解:由a1=2,an+1= 可得:a2= ,a3= .又bn=| |,
則b1=4,b2=8,b3=16.
猜想bn=4×2n﹣1=2n+1
(2)解:證明:cn= = = ﹣ ,
∴數(shù)列|cn|的前項(xiàng)和為Sn= + +…+ = .
∴Sn<
【解析】(1)由a1=2,an+1= 可得:a2= ,a3= .又bn=| |,可得b1 , b2 , b3 . 猜想bn=2n+1 . (2)cn= = = ﹣ ,即可得出數(shù)列|cn|的前項(xiàng)和為Sn .
【考點(diǎn)精析】掌握數(shù)列的定義和表示和數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道數(shù)列中的每個(gè)數(shù)都叫這個(gè)數(shù)列的項(xiàng).記作an,在數(shù)列第一個(gè)位置的項(xiàng)叫第1項(xiàng)(或首項(xiàng)),在第二個(gè)位置的叫第2項(xiàng),……,序號(hào)為n的項(xiàng)叫第n項(xiàng)(也叫通項(xiàng))記作an;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位N名員工參加“社區(qū)低碳你我他”活動(dòng).他們的年齡在25歲至50歲之間.按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.下表是年齡的頻率分布表.
區(qū)間 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人數(shù) | 25 | a | b |
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1人在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果 , 是平面 內(nèi)所有向量的一組基底,那么( )
A.若實(shí)數(shù) , ,使 ,則
B.空間任一向量 可以表示為 ,這里 , 是實(shí)數(shù)
C. , 不一定在平面 內(nèi)
D.對(duì)平面 內(nèi)任一向量 ,使 的實(shí)數(shù) , 有無(wú)數(shù)對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在數(shù)列 中,若 為常數(shù))則稱 為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的有關(guān)判斷( )
①若 是“等方差數(shù)列”,在數(shù)列 是等差數(shù)列;
② 是“等方差數(shù)列”;
③若 是“等方差數(shù)列”,則數(shù)列 為常)也是“等方差數(shù)列”;
④若 既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.
其中正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6. (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx﹣2與橢圓C交于A,B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ ,x∈[0,1].
(1)用分析法證明:f(x)≥1﹣x+x2;
(2)證明:f(x)≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)=xlnx有如下結(jié)論: ①該函數(shù)為偶函數(shù);
②若f′(x0)=2,則x0=e;
③其單調(diào)遞增區(qū)間是[ ,+∞);
④值域是[ ,+∞);
⑤該函數(shù)的圖象與直線y=﹣ 有且只有一個(gè)公共點(diǎn).(本題中e是自然對(duì)數(shù)的底數(shù))
其中正確的是(請(qǐng)把正確結(jié)論的序號(hào)填在橫線上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com