分析 (Ⅰ)利用圖象在點(diǎn)x=0處的切線(xiàn)為y=bx,求出a,b,即可求函數(shù)f(x)的解析式;
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,確定函數(shù)的單調(diào)性,可得φ(x)min=φ(0)=0,即可證明:f(x)≥-x2+x;
(Ⅲ)f(x)>kx對(duì)任意的x∈(0,+∞)恒成立等價(jià)為$\frac{f(x)}{x}$>k對(duì)任意的x∈(0,+∞)恒成立,k<g(x)min=g(1)=e-2,即可求實(shí)數(shù)k的取值范圍.
解答 (Ⅰ)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知f(0)=1+a,f′(0)=1,
由在點(diǎn)x=0處的切線(xiàn)方程y=bx,可得1+a=0,b=1,
解得a=-1,b=1,
∴f(x)=ex-x2-1.
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
當(dāng)x∈(-∞,0)時(shí),φ'(x)<0,φ(x)單調(diào)遞減;
當(dāng)x∈(0,+∞)時(shí),φ'(x)>0,φ(x)單調(diào)遞增.
∴φ(x)min=φ(0)=0,從而f(x)≥-x2+x.
(Ⅲ)f(x)>kx對(duì)任意的x∈(0,+∞)恒成立即為$\frac{f(x)}{x}$>k對(duì)任意的x∈(0,+∞)恒成立,
令g(x)=$\frac{f(x)}{x}$,x>0,
∴g′(x)=$\frac{(x-1)({e}^{x}-x-1)}{{x}^{2}}$.
由y=ex-x-1的導(dǎo)數(shù)為ex-1,當(dāng)x>0時(shí),函數(shù)遞增,當(dāng)x<0時(shí),函數(shù)遞減,
可得x=1取得最小值0,
可知當(dāng)x∈(0,+∞)時(shí),ex-x-1>0恒成立,
令g'(x)>0,得x>1;g'(x)<0,得0<x<1.
∴g(x)的增區(qū)間為(1,+∞),減區(qū)間為(0,1).g(x)min=g(1)=e-2.
∴k<g(x)min=g(1)=e-2,∴實(shí)數(shù)k的取值范圍為(-∞,e-2).
點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)求某點(diǎn)處的切線(xiàn)和函數(shù)的單調(diào)區(qū)間、極值和最值問(wèn)題,考查了函數(shù)的單調(diào)性,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12>5 | B. | 若a為正無(wú)理數(shù),則$\sqrt{a}$也是正無(wú)理數(shù) | ||
C. | 正弦函數(shù)是周期函數(shù)嗎? | D. | π∈{1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,2] | B. | (0,2] | C. | [-2,0)∪{2} | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com