【題目】《數(shù)學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

【答案】A
【解析】解:因為sinA:sinB:sinC=( ﹣1): :( +1), 所以由正弦定理得,a:b:c=( ﹣1): :( +1),
又△ABC的周長為2 +
則a=( ﹣1)、b= 、c=( +1),
所以△ABC的面積S=
=
= =
故選:A.
由題意和正弦定理求出a:b:c,結(jié)合條件求出a、b、c的值,代入公式求出△ABC的面積.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是(
A.若a1+a2>0,則a2+a3>0
B.若a1+a2<0,則a2+a3<0
C.若0<a1<a2 , 則a2
D.若a1<0,則(a2﹣a1)(a2﹣a3)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】算法如圖,若輸入m=210,n=117,則輸出的n為(
A.2
B.3
C.7
D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算下列幾個式子,結(jié)果為 的序號是 ①tan25°+tan35° tan25°tan35°,

③2(sin35°cos25°+sin55°cos65°),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f ( x)= x2 , g ( x)=a ln x(a>0).
(Ⅰ)求函數(shù) F ( x)=f(x)g(x)的極值
(Ⅱ)若函數(shù) G( x)=f(x)﹣g(x)+(a﹣1)在區(qū)間 ( ,e) 內(nèi)有兩個零點,求的取值范圍;
(Ⅲ)函數(shù) h( x)=g ( x )﹣x+ ,設(shè) x1∈(0,1),x2∈(1,+∞),若 h( x 2)﹣h( x 1)存在最大值,記為 M (a),則當 a≤e+1 時,M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義在R上恒不為零的函數(shù),且對任意的x、y∈R都有f(x)f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),則數(shù)列{an}的前n項和Sn的取值范圍是(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.( ,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,E是CD上一點,AB=AD=3,AA1=2,CE=1,P是AA1上一點,且DP∥平面AEB1 , F是棱DD1與平面BEP的交點,則DF的長為(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如下表所示.

用煤(噸)

用電(千瓦)

產(chǎn)值(萬元)

甲產(chǎn)品

3

50

12

乙產(chǎn)品

7

20

8

但國家每天分配給該廠的煤、電有限,每天供煤至多47噸,供電至多300千瓦,問該廠如何安排生產(chǎn),使得該廠日產(chǎn)值最大?最大日產(chǎn)值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=2sin( )(﹣2<x<10)的圖象與x軸交于點A,過點A的直線l與函數(shù)的圖象交于B、C兩點,則( + =(
A.﹣32
B.﹣16
C.16
D.32

查看答案和解析>>

同步練習冊答案