精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,E是CD上一點,AB=AD=3,AA1=2,CE=1,P是AA1上一點,且DP∥平面AEB1 , F是棱DD1與平面BEP的交點,則DF的長為(
A.1
B.
C.
D.

【答案】B
【解析】解:在長方體ABCD﹣A1B1C1D1的棱AB上取點M,使得BM=1, 過點M作MN∥BB1 , 交AB1于N,連接EM、EN,如圖所示;
則平面EMN∥平面ADD1A1;
∵BB1=2AM=2BM,
∴MN=
∴當AP=MN= 時,DP∥EN,
即DP∥平面AEB;
∵F是棱DD1與平面BEP的交點,
∴EF∥BP;
取DG=AP= ,連接CG,則CG∥BP,
∴EF∥CG,
∴DF= DG=
故選:B.

【考點精析】通過靈活運用棱柱的結構特征,掌握兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0, ))的圖象在y軸上的截距為1,在相鄰兩個最值點 和(x0 , ﹣2)上(x0>0),函數f(x)分別取最大值和最小值.
(1)求函數f(x)的解析式;
(2)若f(x)= 在區(qū)間 內有兩個不同的零點,求k的取值范圍;
(3)求函數f(x)在區(qū)間 上的對稱軸方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0 ) 經過點 P(1, ),離心率 e=
(Ⅰ)求橢圓C的標準方程.
(Ⅱ)設過點E(0,﹣2 ) 的直線l 與C相交于P,Q兩點,求△OPQ 面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《數學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2}.
(1)計算a、b的值;
(2)求解不等式x2﹣ax+b>0的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A、B、C的對邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣
(1)討論f(x)的單調性.
(2)若f(x)在區(qū)間(1,2)上單調遞減,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{bn}滿足bn=| |,其中a1=2,an+1=
(1)求b1 , b2 , b3 , 并猜想bn的表達式(不必寫出證明過程);
(2)由(1)寫出數列{bn}的前n項和Sn , 并用數學歸納法證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓O1和圓O2的極坐標方程分別為ρ=2,
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經過兩圓交點的直線的極坐標方程.

查看答案和解析>>

同步練習冊答案