【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為

1

2

3

4

5

0.2

0.3

0.3

0.1

0.1

商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為300元;分4期或5期付款,其利潤為400元,表示經(jīng)銷一件該商品的利潤.

1)求事件:“購買該商品的3位顧客中,至少有1位采用期付款”的概率;

2)求的分布列、期望和方差.

【答案】12)分布列見解析;;

【解析】

(1)購買該商品的3位顧客中至少有1位采用1期付款的對立事件是購買該商品的3位顧客中無人采用1期付款,利用對立事件的概率之和為1,先求購買該商品的3位顧客中無人采用1期付款的概率. (2)的可能取值為200元,300元,400元,根據(jù)顧客采用的付款期數(shù)的分布列依次求概率,列出分布列,再求期望和方差.

解:(1)購買該商品的3位顧客中至少有1位采用1期付款的對立事件是購買該商品的3位顧客中無人采用1期付款,

設(shè)表示事件“購買該商品的3位顧客中至少有1位采用1期付款”.

表示事件“購買該商品的3位顧客中無人采用1期付款”

2)根據(jù)顧客采用的付款期數(shù)的分布列對應(yīng)于的可能取值為200元,300元,400.得到變量對應(yīng)的事件的概率

的分布為

200

300

400

0.2

0.6

0.2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線 .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )

A. 60π B. 36π C. 24π D. 12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查一款電視機(jī)的使用時(shí)間,研究人員對該款電視機(jī)進(jìn)行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:

并對不同年齡層的市民對這款電視機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均使用時(shí)間;

(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購買該款電視機(jī)”與“市民的年齡”有關(guān);

(3)若按照電視機(jī)的使用時(shí)間進(jìn)行分層抽樣,從使用時(shí)間在[0,4)和[4,20]的電視機(jī)中抽取5臺,再從這5臺中隨機(jī)抽取2臺進(jìn)行配件檢測,求被抽取的2臺電視機(jī)的使用時(shí)間都在[4,20]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有12支球隊(duì)進(jìn)行足球比賽,每兩隊(duì)都賽一場,勝者得3分,負(fù)者得0分,平局各得1分那么,有1支球隊(duì)最少要得多少分才能保證最多有6支球隊(duì)的得分不少于該隊(duì)的得分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為1的正方形沿軸順時(shí)針滾動一周,設(shè)頂點(diǎn)的運(yùn)動軌跡與軸所圍區(qū)域?yàn)?/span>,若在平面區(qū)域內(nèi)任意取一點(diǎn),則所取的點(diǎn)恰好落在區(qū)域內(nèi)部的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的焦距為,直線截圓與橢圓所得的弦長之比為,圓、橢圓軸正半軸的交點(diǎn)分別為,.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn))為橢圓上一點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線分別交軸于點(diǎn),,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經(jīng)營了來自中國的小龍蝦,這些小龍蝦標(biāo)有等級代碼.為得到小龍蝦等級代碼數(shù)值與銷售單價(jià)之間的關(guān)系,經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):

等級代碼數(shù)值

38

48

58

68

78

88

銷售單價(jià)(元

16.8

18.8

20.8

22.8

24

25.8

(1)已知銷售單價(jià)與等級代碼數(shù)值之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程(系數(shù)精確到0.1);

(2)若莫斯科某餐廳銷售的中國小龍蝦的等級代碼數(shù)值為98,請估計(jì)該等級的中國小龍蝦銷售單價(jià)為多少元?

參考公式:對一組數(shù)據(jù),,····,其回歸直線的斜率和截距最小二乘估計(jì)分別為:,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰梯形中,,的中點(diǎn),將分別沿向上翻折,使重合,則形成的三棱錐的外接球的表面積為_______

查看答案和解析>>

同步練習(xí)冊答案