【題目】有12支球隊(duì)進(jìn)行足球比賽,每?jī)申?duì)都賽一場(chǎng),勝者得3分,負(fù)者得0分,平局各得1分那么,有1支球隊(duì)最少要得多少分才能保證最多有6支球隊(duì)的得分不少于該隊(duì)的得分?

【答案】23

【解析】

假設(shè)有7支球隊(duì)的得分與該隊(duì)得分相同,那么,這8支球隊(duì)每?jī)申?duì)比賽一場(chǎng)的得分最多為3分所以,他們的得分最多為分,每隊(duì)的得分不能超過(guò)分,故每隊(duì)最多只能勝3場(chǎng).

現(xiàn)將12支球隊(duì)分成兩組,一組為8支得分相同的球隊(duì),另一組為另外4支球隊(duì).同在一組的8支球隊(duì)依次排成一圈,其中每隊(duì)勝他后面的3支隊(duì),并與第4支隊(duì)踢平,且負(fù)于另3支隊(duì).那么,這8支球隊(duì)的每隊(duì)得分最多為分(即同在一組的8支球隊(duì)都勝同組的3隊(duì)平1隊(duì)負(fù)于3隊(duì),勝另一組的4支隊(duì))

因此當(dāng)有8支球隊(duì)得分相同(有7支球隊(duì)的得分不少于該隊(duì))時(shí),每隊(duì)最多可得22分,故當(dāng)題設(shè)命題成立時(shí),該隊(duì)的得分不少于23分

下面證明:若有1支球隊(duì)至少得23分,那么,最多有6支球隊(duì)的得分不少于該隊(duì),否則,設(shè)有7支球隊(duì)得分不少于23分,那么,這8支球隊(duì)的得分不少于8×23=184分.另一方面,將12支球隊(duì)分成兩組,一組8支球隊(duì),另一組4支球隊(duì).同在一組的8支球隊(duì)的總分最多為分.但矛盾,所以,命題成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知所有這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見下表.

百分制

85分及以上

70分到84分

60分到69分

60分以下

等級(jí)

A

B

C

D

規(guī)定:AB,C三級(jí)為合格等級(jí),D為不合格等級(jí)為了解該校高三年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì).

按照,,的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示

n和頻率分布直方圖中的x,y的值,并估計(jì)該校高一年級(jí)學(xué)生成績(jī)是合格等級(jí)的概率;

根據(jù)頻率分布直方圖,求成績(jī)的中位數(shù)精確到;

在選取的樣本中,從A,D兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是A等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)圖象相鄰兩條對(duì)稱軸的距離為,將函數(shù)的圖象向左平移個(gè)單位后,得到的圖象關(guān)于y軸對(duì)稱則函數(shù)的圖象( )

A. 關(guān)于直線對(duì)稱 B. 關(guān)于直線對(duì)稱

C. 關(guān)于點(diǎn)對(duì)稱 D. 關(guān)于點(diǎn)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的左、右焦點(diǎn)分別為.橢圓C的長(zhǎng)軸與焦距之比為,過(guò)的直線lC交于AB兩點(diǎn).

1)求橢圓的方程;

2)當(dāng)l的斜率為1時(shí),求的面積;

3)當(dāng)線段的垂直平分線在y軸上的截距最小時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)區(qū)間.

(2)設(shè),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為

1

2

3

4

5

0.2

0.3

0.3

0.1

0.1

商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤(rùn)為200元;分2期或3期付款,其利潤(rùn)為300元;分4期或5期付款,其利潤(rùn)為400元,表示經(jīng)銷一件該商品的利潤(rùn).

1)求事件:“購(gòu)買該商品的3位顧客中,至少有1位采用期付款”的概率;

2)求的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,滿足,數(shù)列的前項(xiàng)為,滿足

(Ⅰ)設(shè),求證:數(shù)列為等比數(shù)列;

(Ⅱ)求的通項(xiàng)公式;

(Ⅲ)若對(duì)任意的恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:在軸上的一個(gè)焦點(diǎn),與短軸兩個(gè)端點(diǎn)的連線互相垂直,且右焦點(diǎn)坐標(biāo)為

1)求橢圓的方程;

2)設(shè)直線與圓相切,和橢圓交于兩點(diǎn),為原點(diǎn),線段,分別和圓交于,兩點(diǎn),設(shè),的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0A1A2、A5,所有尺寸的紙張長(zhǎng)寬比都相同.②在A系列紙中,前一個(gè)序號(hào)的紙張以兩條長(zhǎng)邊中點(diǎn)連線為折線對(duì)折裁剪分開后,可以得到兩張后面序號(hào)大小的紙,比如1A0紙對(duì)裁后可以得到2A1紙,1A1紙對(duì)裁可以得到2A2紙,依此類推.這是因?yàn)?/span>A系列紙張的長(zhǎng)寬比為1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長(zhǎng)度為(  )

A.厘米B.厘米C.厘米D.厘米

查看答案和解析>>

同步練習(xí)冊(cè)答案