18.現(xiàn)有6個白球、4個黑球,任取4個,則至少有兩個黑球的取法種數(shù)是( 。
A.90B.115C.210D.385

分析 根據(jù)黑球的個數(shù)分為三類,根據(jù)根據(jù)分類計(jì)數(shù)原理可得.

解答 解:分三類,兩個黑球,有C42C62=90種,
三個黑球,有C43C61=24種,
四個黑球,有C44=1種,
根據(jù)分類計(jì)數(shù)原理可得,至少有兩個黑球的取法種數(shù)是90+24+1=115,
故選:B.

點(diǎn)評 本題考查了分類計(jì)數(shù)原理,關(guān)鍵是分類,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U={2,4,6,8,10},集合A={2},B={8,10},則∁U(A∪B)=( 。
A.{4,6}B.{4}C.{6}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a∈R,“關(guān)于x的不等式x2-2ax+a≥0的解集為R”是“0≤a≤1”( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)集R,
(1)若函數(shù)f(x)=2xsin(πx),證明f(x+2)=4f(x);
(2)若f(x+T)=kf(x)(k>0,T>0),若f(x)=axφ(x)(其中a為正的常數(shù)),試證明函數(shù)φ(x)是以T為周期的周期函數(shù);
(3)若f(x+6)=$\sqrt{2}$f(x),且當(dāng)x∈[-3,3]時,f(x)=$\frac{1}{10}$x(x2-9),記Sn=f(2)+f(6)+f(10)+…+f(4n-2)n∈N*,求使得S1、S2、S3…Sn小于1000都成立的最大整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=x2+a|x-1|在[-1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值的集合是{-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={z||z一2|≤2,z∈C},集合B={W|W=$\frac{1}{2}$zi+b,b∈R,z∈A},當(dāng)A∩B=B時,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義在R上的函數(shù)f(x),對任意x,y∈R有f(x+y)+f(x-y)=2f(x)•f(y)且f(0)≠0,則f(0)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=mx+$\sqrt{x}$在區(qū)間[$\frac{1}{2}$,1]上單調(diào)遞增,則( 。
A.[-$\frac{1}{2}$,+∞)B.[$\frac{1}{2}$,+∞)C.[-2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.己知向量$\overrightarrow{a}$=($\sqrt{2}$,$-\sqrt{2}$),$\overrightarrow$=(cosx,sinx),x∈(0,$\frac{π}{2}$).
(I)若向量$\overrightarrow{a}$與$\overrightarrow$平行,求tanx的值;
(Ⅱ)若向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求x的值.

查看答案和解析>>

同步練習(xí)冊答案