【題目】某手機(jī)軟件研發(fā)公司為改進(jìn)產(chǎn)品,對(duì)軟件用戶每天在線的時(shí)間進(jìn)行調(diào)查,隨機(jī)抽取40名男性與20名女性對(duì)其每天在線的時(shí)間進(jìn)行了調(diào)查統(tǒng)計(jì),并繪制了如圖所示的條形圖,其中每天的在線時(shí)間4h以上(包括4h)的用戶被稱為資深用戶

1)根據(jù)上述樣本數(shù)據(jù),完成下面的2×2列聯(lián)表,并判定是否有95%的把握認(rèn)為是否為資深用戶與性別有關(guān);

資深用戶

資深用戶

總計(jì)

男性

女性

總計(jì)

2)用樣本估計(jì)總體,若從全體用戶中隨機(jī)抽取3人,設(shè)這3人中資深用戶的人數(shù)為X,求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

附:,其中na+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

【答案】1)見解析,沒有(2)見解析,0.9

【解析】

1)根據(jù)條形圖中的信息,填寫列聯(lián)表,并計(jì)算的值,查表判斷即可;

2的所有可能的取值分別為0,1,23,從全體用戶中隨機(jī)抽每個(gè)“資深用戶”被抽到的可能性為,故,求出每個(gè)對(duì)應(yīng)的概率,列出分布列求期望即可.

解:(1)依題意,根據(jù)條形圖中的信息,列聯(lián)表如下:

“資深用戶”

非“資深用戶”

總計(jì)

男性

10

30

40

女性

8

12

20

總計(jì)

18

42

60

所以,

故沒有的把握認(rèn)為是否為“資深用戶”與性別有關(guān);

(2)根據(jù)題意,從全體用戶中隨機(jī)抽每個(gè)“資深用戶”被抽到的可能性為,

所以,的所有可能的取值分別為0,1,2,3,

,,,

所以隨機(jī)變量的分布列為:

0

1

2

3

0.343

0.441

0.189

0.027

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點(diǎn),,則的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求曲線在點(diǎn)的切線方程;

2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),

①求函數(shù)在點(diǎn)處的切線方程;

②比較的大小;

2)當(dāng)時(shí),若對(duì)時(shí),,且有唯一零點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個(gè)點(diǎn)

B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌

C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其方差也要加上或減去這個(gè)常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);

2)若f(x)有兩個(gè)極值點(diǎn)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解該企業(yè)工人組裝某產(chǎn)品所用時(shí)間,對(duì)每個(gè)工人組裝一個(gè)該產(chǎn)品的用時(shí)作了記錄,得到大量統(tǒng)計(jì)數(shù)據(jù).從這些統(tǒng)計(jì)數(shù)據(jù)中隨機(jī)抽取了個(gè)數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時(shí)不超過(分鐘),則稱這個(gè)工人為優(yōu)秀員工.

1)求這個(gè)樣本數(shù)據(jù)的中位數(shù)和眾數(shù);

2)從樣本數(shù)據(jù)用時(shí)不超過分鐘的工人中隨機(jī)抽取個(gè),求至少有一個(gè)工人是優(yōu)秀員工的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案