分析 由函數(shù)的解析式,可利用三角恒等變換,將函數(shù)化為y=Asin(ωx+φ)(ω>0)的形式,然后可得其最大值以及周期.
解答 解:∵f(x)=6sinxcosx+$\sqrt{3}$cos2x-1=3sin2x+$\sqrt{3}$cos2x-1=2$\sqrt{3}$sin(2x+θ)-1,其中tanθ=$\frac{\sqrt{3}}{3}$,
∴T=$\frac{2π}{2}$=π,f(x)max=$2\sqrt{3}$-1.
函數(shù)的周期為:π;最大值為:2$\sqrt{3}$-1.
點評 本題考查如何求三角函數(shù)的周期和最值,常用方法利用三角恒等變換,將函數(shù)化為y=Asin(ωx+φ)(ω>0)或y=Acos(ωx+φ)(ω>0)的形式,然后可得周期,最值.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | tan(-$\frac{2π}{7}$)>tan(-$\frac{π}{5}$) | B. | tan(-$\frac{2π}{7}$)<tan(-$\frac{π}{5}$) | C. | tan(-$\frac{2π}{7}$)=tan(-$\frac{π}{5}$) | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$-1 | D. | $\frac{π}{4}$-$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com