三角形的面積為,其中a,b,c為三角形的邊長,r為三角形內(nèi)切圓的半徑,設S1、S2、S3、S4分別為四面體四個面的面積,r為四面體內(nèi)切球的半徑,利用類比推理可以得到四面體的體積為   
【答案】分析:根據(jù)平面與空間之間的類比推理,由點類比點或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.
解答:解:設四面體的內(nèi)切球的球心為O,
則球心O到四個面的距離都是R,
所以四面體的體積等于以O為頂點,
分別以四個面為底面的4個三棱錐體積的和.
利用類比推理可以得到四面體的體積為
故答案為:
點評:類比推理是指依據(jù)兩類數(shù)學對象的相似性,將已知的一類數(shù)學對象的性質(zhì)類比遷移到另一類數(shù)學對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(或猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有下列命題:
①過雙曲線xy=k(k>0)上任意一點的切線與兩坐標軸圍成的三角形的面積為
2
k
;
②曲線xy=k(k>0)關于原點對稱;
③一系列雙曲線xy=(
1
4
)n(n=1,2,3,…)
,所有這些雙曲線的實軸長之和為2
2
;
④“xy=k(k>0)被直線x+y=2
2k
(k>0)
所截得的線段與x2-y2=k(k>0)被直線x=2
2k
(k>0)
所截得的線段相等”是必然事件.其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一元二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,其中一個公共點的坐標為(c,0),且當0<x<c時,恒有f(x)>0.
(1)當a=1,c=
12
時,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,求a的取值范圍;
(4)若不等式m2-2km+1+b+ac≥0對所有k∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省潮州金中08-09學年高二下學期期中考試(理) 題型:選擇題

 三角形的面積為,其中為三角形的邊長,為三角形內(nèi)切圓的半徑, 利用類比推理可以得出四面體的體積為                        

A.                           B.

C.            D.         

(注:分別為四面體的四個面的面積,為四面體內(nèi)切球的半徑,為四面體的高)

 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�