把正方形ABCD沿對角線AC折起,當以A、B、C、D四點為頂點的棱錐體積最大時,直線BD和平面ABC所成的角的大小為 (       )
A.  90°          B .60°        C . 45°            D .30°
C

試題分析:三棱錐體積最大時平面平面,取邊中點,連接,,,BD和平面ABC所成的角為,
點評:本題先由體積最大得到兩面垂直,進而轉(zhuǎn)化為線面垂直找到所求角
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,垂直于⊙所在的平面,是⊙的直徑,是⊙上一點,過點 作,垂足為.
求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分) 在長方體中,分別是的中點,
,.
(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點,使直線垂直,
如果存在,求線段的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個多面體三視圖如右圖所示,則其體積等于                   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)直三棱柱中,點M、N分別為線段的中點,平面側(cè)面  
(1)求證:MN//平面     (2)證明:BC平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知某幾何體的三視圖如右圖所示,則該幾何體的體積為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,三棱柱的各棱長均為2,側(cè)面底面,側(cè)棱與底面所成的角為
(1) 求直線與底面所成的角;
(2) 在線段上是否存在點,使得平面平面?若存在,求出的長;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若三棱錐的一條棱長為,其余棱長均為1,體積是,則函數(shù)在其定義域上為(   )
A.增函數(shù)且有最大值B.增函數(shù)且沒有最大值
C.不是增函數(shù)且有最大值D.不是增函數(shù)且沒有最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法錯誤的是( 。
A.棱柱的兩個底面互相平行B.圓臺與棱臺統(tǒng)稱為臺體
C.棱柱的側(cè)棱垂直于底面D.圓錐的軸截面是一個等腰三角形

查看答案和解析>>

同步練習冊答案