【題目】五位同學(xué)各自制作了一張賀卡,分別裝入5個(gè)空白信封內(nèi),這五位同學(xué)每人隨機(jī)地抽取一封,則恰好有兩人抽取到的賀卡是其本人制作的概率是______________.
【答案】
【解析】
試題根據(jù)題意,首先由排列數(shù)公式分析可得5位同學(xué)每人隨機(jī)地抽取1張卡片的情況;進(jìn)而分兩步分析5人中恰好有2人抽取到的賀卡是其本人制作的情況數(shù)目,①先在5人中抽出2人,使其抽取到的賀卡是其本人制作的,②分析抽到的都不是其本人制作的3人,由分步計(jì)數(shù)原理可得其情況數(shù)目,由等可能事件的概率公式,計(jì)算可得答案.
根據(jù)題意,共5張賀卡,5位同學(xué)每人隨機(jī)地抽取1張,有A55=120種情況,要滿足5人中恰好有2人抽取到的賀卡是其本人制作,可以先在5人中抽出2人,使其抽取到的賀卡是其本人制作的,有C52=10種情況,則剩余的3人,抽到的都不是其本人制作的,有2種情況,則5人中恰好有2人抽取到的賀卡是其本人制作的情況有10×2=20種,
其概率
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)軸正半軸上的動(dòng)點(diǎn)作曲線:的切線,切點(diǎn)為,,線段的中點(diǎn)為,設(shè)曲線與軸的交點(diǎn)為.
(1)求的大小及的軌跡方程;
(2)當(dāng)動(dòng)點(diǎn)到直線的距離最小時(shí),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線與交于、兩點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與軸的交點(diǎn)為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是數(shù)列的前項(xiàng)和,對(duì)任意都有成立(其中是常數(shù)).
(1)當(dāng)時(shí),求:
(2)當(dāng)時(shí),
①若,求數(shù)列的通項(xiàng)公式:
②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“數(shù)列”,如果,試問(wèn):是否存在數(shù)列為“數(shù)列”,使得對(duì)任意,都有,且,若存在,求數(shù)列的首項(xiàng)的所有取值構(gòu)成的集合;若不存在.說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四棱柱的底面邊長(zhǎng)為1,高為2,為線段的中點(diǎn),求:
(1)三棱錐的體積;
(2)異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量(單位:萬(wàn)元)和收益(單位:萬(wàn)元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由;
(Ⅱ)殘差絕對(duì)值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,底面是直角梯形,∥,,且,,是棱的中點(diǎn) .
(Ⅰ)求證:∥平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左右頂點(diǎn)分別為.直線和兩條漸近線交于點(diǎn),點(diǎn)在第一象限且,是雙曲線上的任意一點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);
(3)直線與直線分別交于點(diǎn),證明:以為直徑的圓必過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com