精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線的焦點為,為坐標原點,過點的直線交于、兩點.

1)若直線與圓相切,求直線的方程;

2)若直線軸的交點為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.

【答案】1;(2為定值.

【解析】

1)對直線的斜率是否存在進行分類討論,由直線與圓相切,得出圓心到直線的距離等于半徑,進而可求得直線的方程;

2)對直線的斜率是否存在進行分類討論,可知當直線的斜率不存在時不滿足題意,在直線的斜率存在時,設直線的方程為,與拋物線的方程聯立,列出韋達定理,利用向量的坐標運算得出關于、的表達式,代入韋達定理化簡計算可求得的值.

1)由已知得.

當直線的斜率不存在時,直線的方程為,此時,直線與圓相交,不合乎題意;

當直線的斜率存在時,設直線的方程為,即,

由直線與圓相切,得,解得.

綜上所述,直線的方程為

2)當直線的斜率不存在時,直線的方程為,則直線與拋物線只有一個交點,不合乎題意;

當直線軸不重合時,設直線的方程為,設、.

,則直線軸平行,不合乎題意,所以.

聯立,消去并整理得,由韋達定理得,

易知,由,得

,,同理可得,

所以

所以為定值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數方程為為參數,.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的圾坐標方,且直線l與曲線C相交于AB兩點.

1)求曲線C的普通方程和l的直角坐標方程;

2)若,點滿足,求此時r的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,設函數,

1)試討論的單調性;

2)設函數,是否存在實數,使得存在兩個極值點,,且滿足?若存在,求的取值范圍;若不存在,請說明理由.

注:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)若,且內有且只有一個零點,求的值;

(2)若,且有三個不同零點,問是否存在實數使得這三個零點成等差數列?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為,(θ為參數),以原點為極點,x軸非負半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)在平面直角坐標系xOy中,A(﹣2,0),B0,﹣2),M是曲線C上任意一點,求ABM面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數的定義域為,其圖象如圖所示.函數是定義域為的奇函數,滿足,且當時,.給出下列三個結論:

;

②函數內有且僅有個零點;

③不等式的解集為

其中,正確結論的序號是________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中盈不足章中有這樣一則故事:今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計算每天良馬和駑馬所走的路程之和,設計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知定點,點Ax軸的非正半軸上運動,點By軸上運動,滿足,A關于點B的對稱點為M,設點M的軌跡為曲線C.

1)求C的方程;

2)已知點,動直線C相交于P,Q兩點,求過G,P,Q三點的圓在直線上截得的弦長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)若,方程的實根個數不少于2個,證明:

2)若處導數相等,求的取值范圍,使得對任意的,,恒有成立.

查看答案和解析>>

同步練習冊答案