3.已知集合A={0,2,3,4,5,7},B={1,2,3,4,6},C={x|x∈A,x∉B},則C的元素的個(gè)數(shù)為( 。
A.2B.3C.4D.5

分析 利用元素與集合之間的關(guān)系即可得出.

解答 解:∵集合A={0,2,3,4,5,7},B={1,2,3,4,6},C={x|x∈A,x∉B},
∴C={0,5,7}
則C的元素的個(gè)數(shù)為3.
故選:B.

點(diǎn)評(píng) 本題考查了元素與集合之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.執(zhí)行如圖所示的偽代碼,則輸出的結(jié)果的集合為{2,5,10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對(duì)于任意的實(shí)數(shù)x,有f(x)+f(-x)=2x2,當(dāng)x∈(-∞,0]時(shí),f′(x)+1<2x.若f(2+m)-f(-m)≤2m+2,則實(shí)數(shù)m的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線C的方程為y2=2px(p>0),點(diǎn)R(1,2)在拋物線C上.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)Q(1,1)作直線交拋物線C于不同于R的兩點(diǎn)A,B.若直線AR,BR分別交直線l:y=2x+2于M,N兩點(diǎn),求線段MN最小時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)a=$\frac{1}{{\sqrt{2}}}$(cos34°-sin34°),b=cos50°cos128°+cos40°cos38°,c=$\frac{1}{2}$(cos80°-2cos250°+1),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知kCnk=nCn-1k-1(1≤k≤n,且k,n∈N*)可以得到幾種重要的變式,如:$\frac{1}{k}C_{n-1}^{k-1}=\frac{1}{n}$Cnk,將n+1賦給n,就得到kCn+1k=(n+1)Cnk-1,…,進(jìn)一步能得到:1Cn1+2Cn2•21+…+nCnn•2n-1=nCn-10+nCn-11•21+nCn-12•22+…+nCn-1n-1•2n-1=n(1+2)n-1=n•3n-1
請(qǐng)根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法與結(jié)論,計(jì)算:Cn0×$\frac{1}{3}$+$\frac{1}{2}$Cn1×($\frac{1}{3}$)2+$\frac{1}{3}$Cn2×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$Cnn×($\frac{1}{3}$)n+1=$\frac{1}{n+1}[{(\frac{4}{3})^{n+1}}-1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.集合M={x|y=lg(x2-8x)},N={x|x=2n-1,n∈Z},則{1,3,5,7}=( 。
A.R(M∩N)B.(∁RM)∩NC.(∁RM)∩(∁RN)D.M∩(∁RN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)Tn是數(shù)列{an}的前n項(xiàng)之積,滿足Tn=1-an,n∈N*
(Ⅰ)求a1,a2,a3,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)S=T12+T22+…+Tn2,是否存在k∈N*,使|an+1-Sn|∈($\frac{1}{k+1}$,$\frac{1}{k}$)對(duì)n∈N*恒成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若tan(α+$\frac{π}{4}$)=2,則sin2α的值為$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案