8.幾何體三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{32}{3}$B.$16-\frac{2π}{3}$C.$\frac{40}{3}$D.$16-\frac{8π}{3}$

分析 由三視圖可知:該幾何體可視為長(zhǎng)方體挖去一個(gè)四棱錐,利用體積計(jì)算公式即可得出.

解答 解:由三視圖可知:該幾何體可視為長(zhǎng)方體挖去一個(gè)四棱錐,
所以其體積為$2×2×4-\frac{1}{3}×2×2×2=\frac{40}{3}$.
故選:C.

點(diǎn)評(píng) 本題通過幾何體的三視圖來考查體積的求法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且經(jīng)過點(diǎn)D(2$\sqrt{2}$,2$\sqrt{2}$).
(1)求C的方程;
(2)若P(x0,y0)是第一象限C上異于點(diǎn)D的動(dòng)點(diǎn),過原點(diǎn)向圓(x-x02+(y-y02=8作切線交C于G,H兩點(diǎn),設(shè)直線OG,OH的斜率分別為kOG,kOH,證明:2kOGkOH+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.作出函數(shù)y═-$\frac{1}{x+1}$的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{lna+lnx}{x}$在[1,+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.a≤eB.0<a≤eC.a≥eD.0<a<$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx+(2a-1)x-ax2-a+1,
(1)若$a=\frac{1}{2}$,求f(x)的單調(diào)區(qū)間;
(2)求證:$a≥\frac{1}{2}$時(shí),若x∈[1,+∞),則f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示的多面體是由一個(gè)以四邊形ABCD為地面的直四棱柱被平面A1B1C1D1所截面成,若AD=DC=2,AB=BC=2$\sqrt{3}$,∠DAB=∠BCD=90°,且AA1=CC1=$\frac{3}{2}$;
(1)求二面角D1-A1B-A的大小;
(2)求此多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面直角坐標(biāo)系中xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ為參數(shù)),則曲線C是( 。
A.關(guān)于x軸對(duì)稱的圖形B.關(guān)于y軸對(duì)稱的圖形
C.關(guān)于原點(diǎn)對(duì)稱的圖形D.關(guān)于直線y=x對(duì)稱的圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)y=loga(x+b)(a,b為常數(shù))的圖象如圖所示,則函數(shù)g(x)=b${\;}^{{x}^{2}-2x}$,x∈[0,3]的最大值是(  )
A.1B.bC.b2D.$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=x2+ax-$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函數(shù),則a的取值范圍( 。
A.(-∞,3]B.(-∞,-3]C.[-3,+∞)D.(-3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案